Skip to main content

2019 | OriginalPaper | Buchkapitel

Development of 3D Printed Phantom for Dose Verification in Radiotherapy for the Patient with Metal Artefacts Inside

verfasst von : Diana Adlienė, Evelina Jaselskė, Benas Gabrielis Urbonavičius, Jurgita Laurikaitienė, Viktoras Rudžianskas, Tadas Didvalis

Erschienen in: World Congress on Medical Physics and Biomedical Engineering 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the problems performing IMRT dose planning or plan verification using anthropomorphic phantoms for head and neck cancer patients is the presence of possible artefacts (dental crowns, metal dental implants, dental restoration materials.) inside the oral cavity. In many cases these artefacts are not accounted but may cause deviations from patient treatment plans due to enhanced scattering dose from the metal artefacts. Exploiting 3D printing technologies 3D dosimetry phantom corresponding to patient-specific anatomic structures with precisely positioned artefacts can be produced. Application of such 3D phantom in radiation therapy may contribute to more accurate dose planning and thus more efficient patient treatment. In this work we propose newly developed patient-specific 3D printed phantom of lower jaw with teeth which can be used for patient specific QA in IMRT. Developing this phantom DICOM image of the real patient was used for 3D reconstruction of patient’s lower jaw with teeth. 3D shape of this anatomic structure was printed out using Zortrax M300 3D printer. High Impact Polystyrene (HIPS) which is characterized as having satisfactory bone tissue equivalency was used as printing material. Keeping in mind a real patient, possibility of covering of corresponding teeth with a metallic crown in the 3D printed jaw construction was foreseen. Prepared construction was fixed in dose gel matrix, thus forming dosimetry phantom for the evaluation of possible radiation treatment errors caused by artefacts located in this anatomic region of the patient. Investigation of 3D printed lower jaw phantom has shown its feasibility for the assessment of dose distortions related to the presence of metal artefacts in the mouth of the patient. Also potential for the application of 3D printed phantoms in radiotherapy quality assurance has been shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beadle, BM., et al. Improved survival using intensity-modulated radiation therapy in head and neck cancers: a SEER-Medicare analysis. Cancer 120, 702–10 (2014). Beadle, BM., et al. Improved survival using intensity-modulated radiation therapy in head and neck cancers: a SEER-Medicare analysis. Cancer 120, 702–10 (2014).
2.
Zurück zum Zitat Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). Journal of the ICRU 10(1) 1–106 (2010). Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). Journal of the ICRU 10(1) 1–106 (2010).
3.
Zurück zum Zitat ESTRO Booklet 9: Guidelines for the Verification of IMRT. Brussels: ESTRO; 2008. ESTRO Booklet 9: Guidelines for the Verification of IMRT. Brussels: ESTRO; 2008.
4.
Zurück zum Zitat AAPM Report No. 85: tissue inhomogeneity corrections for megavoltage photon beams. Medical Physics Publishing, Madison, WI 53705-4964 (2004). AAPM Report No. 85: tissue inhomogeneity corrections for megavoltage photon beams. Medical Physics Publishing, Madison, WI 53705-4964 (2004).
5.
Zurück zum Zitat Kamomae, T., et al. Dosimetric impact of dental metallic crown on intensity-modulated radiotherapy and volumetric-modulated arc therapy for head and neck cancer. J Appl Clin Med Phys. 17, 234–245 (2016). Kamomae, T., et al. Dosimetric impact of dental metallic crown on intensity-modulated radiotherapy and volumetric-modulated arc therapy for head and neck cancer. J Appl Clin Med Phys. 17, 234–245 (2016).
6.
Zurück zum Zitat Jaselskė, E., et al. Dosimetric characteristics of 3D printed materials. In: Medical physics in the Baltic States. Proceedings of the 13th International Conference on Medical Physics, pp. 52–55, Kaunas University of Technology, Kaunas (2017). ISSN: 1822-5721. Jaselskė, E., et al. Dosimetric characteristics of 3D printed materials. In: Medical physics in the Baltic States. Proceedings of the 13th International Conference on Medical Physics, pp. 52–55, Kaunas University of Technology, Kaunas (2017). ISSN: 1822-5721.
7.
Zurück zum Zitat Sung-Woo, K., et al. Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides. Prog Med Phys. 28(1) 33–38 (2017). Sung-Woo, K., et al. Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides. Prog Med Phys. 28(1) 33–38 (2017).
8.
Zurück zum Zitat Michiels, S., et al. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization. Med Phys. 43(10) 5392 (2016). Michiels, S., et al. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization. Med Phys. 43(10) 5392 (2016).
9.
Zurück zum Zitat Unterhinninghofen, R., et al. 3D printing of individual immobilization devices based on imaging ñ analysis of positioning accuracy. Radiotherapy and Oncology 115 (1) S199–S200 (2015). Unterhinninghofen, R., et al. 3D printing of individual immobilization devices based on imaging ñ analysis of positioning accuracy. Radiotherapy and Oncology 115 (1) S199–S200 (2015).
10.
Zurück zum Zitat McCowan, P. et al. On The Physical and Dosimetric Properties of 3D Printed Electron Bolus Fabrcated Using Polylactic Acid. Radiotherapy and Ocology. 120 (1) S47 (2016). McCowan, P. et al. On The Physical and Dosimetric Properties of 3D Printed Electron Bolus Fabrcated Using Polylactic Acid. Radiotherapy and Ocology. 120 (1) S47 (2016).
11.
Zurück zum Zitat Burleson, S., et al. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J. Appl. Clin. Med. Phys. 16(3) 5247 (2015). Burleson, S., et al. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J. Appl. Clin. Med. Phys. 16(3) 5247 (2015).
12.
Zurück zum Zitat Holtzer, N.A., et al. 3D printing of tissue equivalent boluses and molds for external beam radiotherapy. Radiotherapy and Oncology. 111(1) S279 (2014). Holtzer, N.A., et al. 3D printing of tissue equivalent boluses and molds for external beam radiotherapy. Radiotherapy and Oncology. 111(1) S279 (2014).
13.
Zurück zum Zitat Mayer, R., et al. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry. Rev Sci. Instrum. (2015). 86p. Mayer, R., et al. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry. Rev Sci. Instrum. (2015). 86p.
14.
Zurück zum Zitat Alssabbagh, M., et al. Evaluation of 3D printing materials for fabrication of a novel multifunctional 3D thyroid phantom for medical dosimetry and image quality. Rad. Phys. and Chem. 135, 106–112 (2017). Alssabbagh, M., et al. Evaluation of 3D printing materials for fabrication of a novel multifunctional 3D thyroid phantom for medical dosimetry and image quality. Rad. Phys. and Chem. 135, 106–112 (2017).
15.
Zurück zum Zitat Craft, D. and Howell, R. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys. 5, 285–292 (2015). Craft, D. and Howell, R. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys. 5, 285–292 (2015).
16.
Zurück zum Zitat Kamomaea, T., et al. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Med. Phys. 44, 205–211 (2017). Kamomaea, T., et al. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Med. Phys. 44, 205–211 (2017).
17.
Zurück zum Zitat Woon Yea, J., et al. Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient specific quality assurance of intensity modulated radiotherapy. PLoS ONE. 12(7), e0181560 (2017). Woon Yea, J., et al. Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient specific quality assurance of intensity modulated radiotherapy. PLoS ONE. 12(7), e0181560 (2017).
18.
Zurück zum Zitat Adlienė, D., et al. Application of dose gels in HDR brachytherapy. IFMBE Proc. 2015, V51, 724–727. Adlienė, D., et al. Application of dose gels in HDR brachytherapy. IFMBE Proc. 2015, V51, 724–727.
19.
Zurück zum Zitat Adlienė, D., et al. First approach to ionizing radiation based 3D printing: fabrication of free standing dose gels using high energy gamma photons. NIMB62907 (2018). Accepted for publication. Adlienė, D., et al. First approach to ionizing radiation based 3D printing: fabrication of free standing dose gels using high energy gamma photons. NIMB62907 (2018). Accepted for publication.
20.
Zurück zum Zitat Shimamoto, H., Sumida,I. and Kakimoto,N. Evaluation of the scatter doses in the direction of the buccal mucosa from dental metals. J. Appl. Clin. Med. Phys.16 (3) 233–243 (2015). Shimamoto, H., Sumida,I. and Kakimoto,N. Evaluation of the scatter doses in the direction of the buccal mucosa from dental metals. J. Appl. Clin. Med. Phys.16 (3) 233–243 (2015).
22.
Zurück zum Zitat Spirydovicha, S., Papieza, L., Langera, M. High density dental materials and radiotherapy planning: Comparison of the dose predictions using superposition algorithm and fluence map Monte Carlo method with radiochromic film measurements. Radiotherapy and Oncology 81, 309–314 (2006). Spirydovicha, S., Papieza, L., Langera, M. High density dental materials and radiotherapy planning: Comparison of the dose predictions using superposition algorithm and fluence map Monte Carlo method with radiochromic film measurements. Radiotherapy and Oncology 81, 309–314 (2006).
23.
Zurück zum Zitat Çatli, S. High-density dental implants and radiotherapy planning: evaluation of effects on dose distribution using pencil beam convolution algorithm and Monte Carlo method. J. Appl. Clin. Med. Phys. 16 (5) 46–52 (2015). Çatli, S. High-density dental implants and radiotherapy planning: evaluation of effects on dose distribution using pencil beam convolution algorithm and Monte Carlo method. J. Appl. Clin. Med. Phys. 16 (5) 46–52 (2015).
24.
Zurück zum Zitat Hersch, C.A. Applying 3-Dimensional Printing for Radiation Exposure Assessment. National Cancer Institute. Cancer.gov. (2017). Hersch, C.A. Applying 3-Dimensional Printing for Radiation Exposure Assessment. National Cancer Institute. Cancer.gov. (2017).
25.
Zurück zum Zitat Savi, M., et al. Density comparison of 3D printing materials and the human body. IJC Radiology, pp 1–3 (2017). Savi, M., et al. Density comparison of 3D printing materials and the human body. IJC Radiology, pp 1–3 (2017).
26.
Zurück zum Zitat Craft, D., Burgett, E., Howell, R. Evaluation of single material and multimaterial patient-specific, 3D-printed radiotherapy phantoms. Radiotherapy and Oncology. EP-1435(2017). Craft, D., Burgett, E., Howell, R. Evaluation of single material and multimaterial patient-specific, 3D-printed radiotherapy phantoms. Radiotherapy and Oncology. EP-1435(2017).
27.
Zurück zum Zitat Jeong, H., et al. Development and evaluation of a phantom for multipurpose in Intensity Modulated Radiation Therapy. Nucl. Eng. Tech. 4(43) 399–404 (2011). Jeong, H., et al. Development and evaluation of a phantom for multipurpose in Intensity Modulated Radiation Therapy. Nucl. Eng. Tech. 4(43) 399–404 (2011).
28.
Zurück zum Zitat Alssabbagh, M., et al. Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. Int. J. Advanced and Applied Sciences. 4(9) 168–173 (2017). Alssabbagh, M., et al. Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. Int. J. Advanced and Applied Sciences. 4(9) 168–173 (2017).
32.
Zurück zum Zitat Adlienė, D., et al. Application of optical methods for dose evaluation in normoxic polyacrylamide gels irradiated at two different geometries. NIM-A. 741, 88–94 (2014). Adlienė, D., et al. Application of optical methods for dose evaluation in normoxic polyacrylamide gels irradiated at two different geometries. NIM-A. 741, 88–94 (2014).
Metadaten
Titel
Development of 3D Printed Phantom for Dose Verification in Radiotherapy for the Patient with Metal Artefacts Inside
verfasst von
Diana Adlienė
Evelina Jaselskė
Benas Gabrielis Urbonavičius
Jurgita Laurikaitienė
Viktoras Rudžianskas
Tadas Didvalis
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9023-3_119

Neuer Inhalt