Skip to main content

2020 | OriginalPaper | Buchkapitel

Development of a Novel Solution for Leading Edge Erosion on Offshore Wind Turbine Blades

verfasst von : William Finnegan, Tomas Flanagan, Jamie Goggins

Erschienen in: Proceedings of the 13th International Conference on Damage Assessment of Structures

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, wind energy has become a leading source of renewable energy as the world strives to remove its reliance on fossil fuels. With the growing demand for wind energy, wind farms have begun to move offshore and the size of the average wind turbine has increased (up to 10 MW). However, as a result of these advances, additional challenges are presented – one of the most significant being leading edge erosion on wind turbine blades. This erosion requires additional maintenance, while lowering a turbine’s annual energy production by up to 25%, which needs to be eliminated, or significantly reduced, if offshore wind energy is to become competitive within global energy markets. To this end, in this paper, the methodology proposed in LEAPWind, a new collaborative European research project, which aims to prevent blade leading-edge erosion by employing advanced composite materials and innovative manufacturing processes has been presented. An advanced thermoplastic-epoxy composite material is used to manufacture a leading edge component for a wind turbine blade. The critical technical stages, including material identification and characterisation, component design and manufacture have been discussed. Additionally, the details relating to de-risking of the novel technologies through mechanical and rain erosion testing, and full-scale operational trials on a 2.1 MW wind turbine, located in an onshore wind farm in Portugal, has been included. The results of this study, will not only have social and economic benefits, but also a significant environmental impact as it will allow for the manufacture of a more sustainable wind turbine blade.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Conroy, J.: World wind power to almost double to 650GW by 2020. The Australian. 21 January 2015 Conroy, J.: World wind power to almost double to 650GW by 2020. The Australian. 21 January 2015
3.
Zurück zum Zitat Budinski, K.G.: Guide to Friction, Wear and Erosion Testing. ASTM international, West Conshohocken, PA (2007) Budinski, K.G.: Guide to Friction, Wear and Erosion Testing. ASTM international, West Conshohocken, PA (2007)
4.
Zurück zum Zitat Keegan, M.H., Nash, D.H., Stack, M.M.: On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D: Appl. Phys. 46, 383001 (2013)CrossRef Keegan, M.H., Nash, D.H., Stack, M.M.: On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D: Appl. Phys. 46, 383001 (2013)CrossRef
5.
Zurück zum Zitat Chen, J., Wang, J., Ni, A.: A review on rain erosion protection of wind turbine blades. J. Coat. Technol. Res. 16, 15–24 (2018)CrossRef Chen, J., Wang, J., Ni, A.: A review on rain erosion protection of wind turbine blades. J. Coat. Technol. Res. 16, 15–24 (2018)CrossRef
6.
Zurück zum Zitat Cortes, E., Sanchez, F., O’Carroll, A., Madramany, B., Hardiman, M., Young, T.M.: On the material characterisation of wind turbine blade coatings: the effect of interphase coating-laminate adhesion on rain erosion performance. Materials 10, 1146 (2017)CrossRef Cortes, E., Sanchez, F., O’Carroll, A., Madramany, B., Hardiman, M., Young, T.M.: On the material characterisation of wind turbine blade coatings: the effect of interphase coating-laminate adhesion on rain erosion performance. Materials 10, 1146 (2017)CrossRef
7.
Zurück zum Zitat Cook, S.S.: Erosion by water-hammer. Proc. R. Soc. A: Math. Phys. Eng. Sci. 119, 481–488 (1928)CrossRef Cook, S.S.: Erosion by water-hammer. Proc. R. Soc. A: Math. Phys. Eng. Sci. 119, 481–488 (1928)CrossRef
8.
Zurück zum Zitat Mann, B.S., Arya, V.: An experimental study to correlate water jet impingement erosion resistance and properties of metallic materials and coatings. Wear 253, 650–661 (2002)CrossRef Mann, B.S., Arya, V.: An experimental study to correlate water jet impingement erosion resistance and properties of metallic materials and coatings. Wear 253, 650–661 (2002)CrossRef
9.
Zurück zum Zitat Tobin, E.F., Rohr, O., Raps, D., Willemse, W., Norman, P., Young, T.M.: Surface topography parameters as a correlation factor for liquid droplet erosion test facilities. Wear 328–329, 318–328 (2015)CrossRef Tobin, E.F., Rohr, O., Raps, D., Willemse, W., Norman, P., Young, T.M.: Surface topography parameters as a correlation factor for liquid droplet erosion test facilities. Wear 328–329, 318–328 (2015)CrossRef
10.
Zurück zum Zitat O’Carroll, A., Hardiman, M., Tobin, E.F., Young, T.M.: Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation. Wear 412–413, 38–48 (2018)CrossRef O’Carroll, A., Hardiman, M., Tobin, E.F., Young, T.M.: Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation. Wear 412–413, 38–48 (2018)CrossRef
11.
Zurück zum Zitat Young, T.M., Tobin, E.: Rain erosion testing of composite materials: the design of a laboratory test facility. In: 3rd International Supply Wings Conference, Frankfurt, Germany (2008) Young, T.M., Tobin, E.: Rain erosion testing of composite materials: the design of a laboratory test facility. In: 3rd International Supply Wings Conference, Frankfurt, Germany (2008)
12.
Zurück zum Zitat Engel, O.G.: Mechanism of Rain Erosion Part 2: A Critical Review of Erosion by Water Drop Impact. Nation Bureau of Standards (1953) Engel, O.G.: Mechanism of Rain Erosion Part 2: A Critical Review of Erosion by Water Drop Impact. Nation Bureau of Standards (1953)
13.
Zurück zum Zitat Bourne, N.K., Obara, T., Field, J.E.: The impact and penetration of a water surface by a liquid jet. Proc. R. Soc. A: Math. Phys. Eng. Sci. 452, 1497–1502 (1996)CrossRef Bourne, N.K., Obara, T., Field, J.E.: The impact and penetration of a water surface by a liquid jet. Proc. R. Soc. A: Math. Phys. Eng. Sci. 452, 1497–1502 (1996)CrossRef
14.
Zurück zum Zitat Adler, W.F.: Influence of water drop distortion on impact damage. In: Proceedings of the Sixth Symposium on Electromagnetic Wind, Atlanta (1982) Adler, W.F.: Influence of water drop distortion on impact damage. In: Proceedings of the Sixth Symposium on Electromagnetic Wind, Atlanta (1982)
15.
Zurück zum Zitat Schmitt Jr., G.F.: Flight test-whirling arm correlation of rain erosion resistance of materials. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH (1968) Schmitt Jr., G.F.: Flight test-whirling arm correlation of rain erosion resistance of materials. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH (1968)
16.
Zurück zum Zitat ASTM G73 – 10: Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus. ASTM International, West Conshohocken, PA, USA (2017) ASTM G73 – 10: Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus. ASTM International, West Conshohocken, PA, USA (2017)
17.
Zurück zum Zitat ASTM, D3039 / D3039 M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA, USA (2017) ASTM, D3039 / D3039 M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA, USA (2017)
18.
Zurück zum Zitat ASTM D3479 / D3479 M – 12: Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA, USA (2017) ASTM D3479 / D3479 M – 12: Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA, USA (2017)
19.
Zurück zum Zitat Lawrence, K.L.: ANSYS Workbench Tutorial Release 14. SDC publications, Mission, KS (2012) Lawrence, K.L.: ANSYS Workbench Tutorial Release 14. SDC publications, Mission, KS (2012)
20.
Zurück zum Zitat Finnegan, W., Fagan, E., Flanagan, T., Doyle, A., Goggins, J.: Operational fatigue loadings on tidal turbine blades using computational fluid dynamics, Renewable Energy (Under Review) Finnegan, W., Fagan, E., Flanagan, T., Doyle, A., Goggins, J.: Operational fatigue loadings on tidal turbine blades using computational fluid dynamics, Renewable Energy (Under Review)
21.
Zurück zum Zitat Fagan, E.: Design of Fibre-Reinforced Polymer Composite Blades for Wind and Tidal Turbines. National University of Ireland Galway, Galway, Ireland (2017) Fagan, E.: Design of Fibre-Reinforced Polymer Composite Blades for Wind and Tidal Turbines. National University of Ireland Galway, Galway, Ireland (2017)
22.
Zurück zum Zitat Finnegan, W., Goggins, J.: Linear irregular wave generation in a numerical wave tank. Appl. Ocean Res. 52, 188–200 (2015)CrossRef Finnegan, W., Goggins, J.: Linear irregular wave generation in a numerical wave tank. Appl. Ocean Res. 52, 188–200 (2015)CrossRef
23.
Zurück zum Zitat DNV-DS-J102: Design and Manufacture of Wind Turbine Blades, Offshore and Onshore Wind Turbines. DNV GL Standard (2010) DNV-DS-J102: Design and Manufacture of Wind Turbine Blades, Offshore and Onshore Wind Turbines. DNV GL Standard (2010)
24.
Zurück zum Zitat IEC 61400-23:2014: Full-Scale Structural Testing of Rotor Blades. Wind Turbines, International Electrotechnical Commission Part 23 (2014) IEC 61400-23:2014: Full-Scale Structural Testing of Rotor Blades. Wind Turbines, International Electrotechnical Commission Part 23 (2014)
25.
Zurück zum Zitat DNVGL-CP-0424: Coatings for Protection of FRP Structures with Heavy Rain Erosion Loads. DNV GL Standard (2016) DNVGL-CP-0424: Coatings for Protection of FRP Structures with Heavy Rain Erosion Loads. DNV GL Standard (2016)
26.
Zurück zum Zitat Astariz, S., Vazquez, A., Iglesias, G.: Evaluation and comparison of the levelized cost of tidal, wave, and offshore wind energy. J. Renew. Sustain. Energy 7, 053112 (2015)CrossRef Astariz, S., Vazquez, A., Iglesias, G.: Evaluation and comparison of the levelized cost of tidal, wave, and offshore wind energy. J. Renew. Sustain. Energy 7, 053112 (2015)CrossRef
Metadaten
Titel
Development of a Novel Solution for Leading Edge Erosion on Offshore Wind Turbine Blades
verfasst von
William Finnegan
Tomas Flanagan
Jamie Goggins
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8331-1_38

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.