Skip to main content
Erschienen in: International Journal of Social Robotics 4/2021

23.06.2020 | Survey

Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review

verfasst von: Bhaben Kalita, Jyotindra Narayan, Santosha Kumar Dwivedy

Erschienen in: International Journal of Social Robotics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The basic routine movements for elderly people are not easily accessible due to the weak muscles and impaired nerves in their lower extremity. In the last few years, many robotic-based rehabilitation devices, like orthosis and exoskeletons, have been designed and developed by researchers to provide locomotion assistance to support gait behavior and to perform daily activities for elderly people. However, there is still a need for improvement in the design, actuation and control of these devices for making them cost-effective in the worldwide market. In this work, a systematic review is presented on available lower limb orthosis and exoskeleton devices, to date. The devices are broadly reviewed according to joint types, actuation modes and control strategies. Furthermore, tabular comparisons have also been presented with the types and applications of these devices. Finally, the needful improvements for realizing the efficacy of lower limb rehabilitation devices are discussed along with the development stage. This review will help the designers and researchers to develop an efficient robotic device for the rehabilitation of the lower limb.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH (2019) State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 7:95075–95086CrossRef Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH (2019) State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 7:95075–95086CrossRef
3.
Zurück zum Zitat Herr H (2009) Exoskeletons and orthoses: classification. Design challenges and future. J Neuroeng Rehabil 6:21CrossRef Herr H (2009) Exoskeletons and orthoses: classification. Design challenges and future. J Neuroeng Rehabil 6:21CrossRef
4.
Zurück zum Zitat Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot 24(1):144–158CrossRef Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot 24(1):144–158CrossRef
5.
Zurück zum Zitat Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil 6(1):21CrossRef Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil 6(1):21CrossRef
6.
Zurück zum Zitat Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Mag 29(3):57–63CrossRef Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Mag 29(3):57–63CrossRef
7.
Zurück zum Zitat Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. J Dyn Syst Meas Contr 128(1):14–25CrossRef Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. J Dyn Syst Meas Contr 128(1):14–25CrossRef
8.
Zurück zum Zitat Guizzo E, Goldstein H (2005) The rise of the body bots [robotic exoskeletons]. IEEE Spectr 42(10):50–56CrossRef Guizzo E, Goldstein H (2005) The rise of the body bots [robotic exoskeletons]. IEEE Spectr 42(10):50–56CrossRef
9.
Zurück zum Zitat Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 4(03):487–506CrossRef Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 4(03):487–506CrossRef
10.
Zurück zum Zitat Sankai Y (2010) HAL: hybrid assistive limb based on cybernics. In: Kaneko M, Nakamura Y (eds) Robotics research. Springer, Heidelberg, pp 25–34CrossRef Sankai Y (2010) HAL: hybrid assistive limb based on cybernics. In: Kaneko M, Nakamura Y (eds) Robotics research. Springer, Heidelberg, pp 25–34CrossRef
11.
Zurück zum Zitat Wang L, Wang S, van Asseldonk EH, van der Kooij H (2013) Actively controlled lateral gait assistance in a lower limb exoskeleton. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 965–970. IEEE Wang L, Wang S, van Asseldonk EH, van der Kooij H (2013) Actively controlled lateral gait assistance in a lower limb exoskeleton. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 965–970. IEEE
12.
Zurück zum Zitat Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of Mina: a robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–8. IEEE Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of Mina: a robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–8. IEEE
13.
Zurück zum Zitat Nakamura T, Saito K, Kosuge K (2005) Control of wearable walking support system based on human-model and GRF. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4394–4399. IEEE Nakamura T, Saito K, Kosuge K (2005) Control of wearable walking support system based on human-model and GRF. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4394–4399. IEEE
14.
Zurück zum Zitat Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921CrossRef Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921CrossRef
15.
Zurück zum Zitat Sanz-Merodio D, Cestari M, Arevalo JC, Carrillo XA, Garcia E (2014) Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Adv Robot 28(5):329–338CrossRef Sanz-Merodio D, Cestari M, Arevalo JC, Carrillo XA, Garcia E (2014) Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Adv Robot 28(5):329–338CrossRef
16.
Zurück zum Zitat Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 4911–4916. IEEE Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 4911–4916. IEEE
17.
Zurück zum Zitat Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37(6):693–700 Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37(6):693–700
18.
Zurück zum Zitat Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386CrossRef Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386CrossRef
20.
Zurück zum Zitat del Carmen Sanchez-Villamañan M, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL (2019) Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil 16(1):55CrossRef del Carmen Sanchez-Villamañan M, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL (2019) Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil 16(1):55CrossRef
21.
Zurück zum Zitat Lee H, Ferguson PW, Rosen J (2020) Lower limb exoskeleton systems—overview. In: Rosen J, Ferguson PW (eds) Wearable robotics. Academic Press, Elsevier, pp 207–229 Lee H, Ferguson PW, Rosen J (2020) Lower limb exoskeleton systems—overview. In: Rosen J, Ferguson PW (eds) Wearable robotics. Academic Press, Elsevier, pp 207–229
22.
Zurück zum Zitat Subramaniyam M, Kumar K, Shanmugam D, Kim DJ, Lee KS, Park SJ, Min SN (2019) Assistive technologies for elderly—review on recent developments in lower limb and back pain management. In: 2019 International conference on applied human factors and ergonomics, pp 824–830. Springer, Cham Subramaniyam M, Kumar K, Shanmugam D, Kim DJ, Lee KS, Park SJ, Min SN (2019) Assistive technologies for elderly—review on recent developments in lower limb and back pain management. In: 2019 International conference on applied human factors and ergonomics, pp 824–830. Springer, Cham
23.
Zurück zum Zitat Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32(1):74CrossRef Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32(1):74CrossRef
24.
Zurück zum Zitat Grabke EP, Masani K, Andrysek J (2019) Lower limb assistive device design optimization using musculoskeletal modeling: a review. J Med Devices 13(4):040801CrossRef Grabke EP, Masani K, Andrysek J (2019) Lower limb assistive device design optimization using musculoskeletal modeling: a review. J Med Devices 13(4):040801CrossRef
25.
Zurück zum Zitat Ghaddar R, Mohammad MA (2019) A review of lower limb exoskeleton assistive devices for sit-to-stand and gait motion. Int J Curr Eng Technol 9(1):105–111 Ghaddar R, Mohammad MA (2019) A review of lower limb exoskeleton assistive devices for sit-to-stand and gait motion. Int J Curr Eng Technol 9(1):105–111
26.
Zurück zum Zitat Rose J, Gamble JG (1994) Human walking, 2nd edn. Williams and Wilkins, Baltimore Rose J, Gamble JG (1994) Human walking, 2nd edn. Williams and Wilkins, Baltimore
27.
Zurück zum Zitat Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136CrossRef Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136CrossRef
28.
Zurück zum Zitat Kazerooni H, Racine JL, Huang L, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4353–4360. IEEE Kazerooni H, Racine JL, Huang L, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4353–4360. IEEE
29.
Zurück zum Zitat Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11(2):128–138CrossRef Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11(2):128–138CrossRef
30.
Zurück zum Zitat Marcheschi S, Salsedo F, Fontana M, Bergamasco M (2011) Body extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE international conference on robotics and automation, pp 611–616. IEEE Marcheschi S, Salsedo F, Fontana M, Bergamasco M (2011) Body extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE international conference on robotics and automation, pp 611–616. IEEE
31.
Zurück zum Zitat Yang Z, Zhu Y, Yang X, Zhang Y (2009) Impedance control of exoskeleton suit based on adaptive RBF neural network. In: 2009 International conference on intelligent human-machine systems and cybernetics, pp 182–187. IEEE Yang Z, Zhu Y, Yang X, Zhang Y (2009) Impedance control of exoskeleton suit based on adaptive RBF neural network. In: 2009 International conference on intelligent human-machine systems and cybernetics, pp 182–187. IEEE
32.
Zurück zum Zitat Yamamoto K, Hyodo K, Ishii M, Matsuo T (2002) Development of power assisting suit for assisting nurse labor. JSME Int J C-Mech Syst 45(3):703–711CrossRef Yamamoto K, Hyodo K, Ishii M, Matsuo T (2002) Development of power assisting suit for assisting nurse labor. JSME Int J C-Mech Syst 45(3):703–711CrossRef
33.
Zurück zum Zitat Yamamoto K, Ishii M, Noborisaka H, Hyodo K (2004) Stand lone wearable power assisting suit-sensing and control systems. In RO-MAN 2004. 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No. 04TH8759), pp 661–666. IEEE Yamamoto K, Ishii M, Noborisaka H, Hyodo K (2004) Stand lone wearable power assisting suit-sensing and control systems. In RO-MAN 2004. 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No. 04TH8759), pp 661–666. IEEE
34.
Zurück zum Zitat Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuated exoskeleton for load-carrying augmentation. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 1410–1415. IEEE Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuated exoskeleton for load-carrying augmentation. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 1410–1415. IEEE
35.
Zurück zum Zitat Ahmed AIA, Cheng H, Lin X, Omer M, Atieno JM (2016) Variable admittance control for climbing stairs in human-powered exoskeleton systems. Adv Robot Autom 5(157):2 Ahmed AIA, Cheng H, Lin X, Omer M, Atieno JM (2016) Variable admittance control for climbing stairs in human-powered exoskeleton systems. Adv Robot Autom 5(157):2
36.
Zurück zum Zitat Ouyang X, Ding S, Fan B, Li PY, Yang H (2016) Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics 38:68–75CrossRef Ouyang X, Ding S, Fan B, Li PY, Yang H (2016) Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics 38:68–75CrossRef
37.
Zurück zum Zitat Ding S, Ouyang X, Liu T, Li Z, Yang H (2018) Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU. IEEE Sens J 18(23):9728–9735CrossRef Ding S, Ouyang X, Liu T, Li Z, Yang H (2018) Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU. IEEE Sens J 18(23):9728–9735CrossRef
38.
Zurück zum Zitat Sanz-Merodio D, Cestari M, Arevalo JC, Garcia E (2012) Control motion approach of a lower limb orthosis to reduce energy consumption. Int J Adv Robot Syst 9(6):232CrossRef Sanz-Merodio D, Cestari M, Arevalo JC, Garcia E (2012) Control motion approach of a lower limb orthosis to reduce energy consumption. Int J Adv Robot Syst 9(6):232CrossRef
39.
Zurück zum Zitat Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: 2009 IEEE international conference on robotics and automation, pp 2556–2562. IEEE Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: 2009 IEEE international conference on robotics and automation, pp 2556–2562. IEEE
40.
Zurück zum Zitat Sylos-Labini F, La Scaleia V, d’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, Van Der Kooij H (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8:423CrossRef Sylos-Labini F, La Scaleia V, d’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, Van Der Kooij H (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8:423CrossRef
41.
Zurück zum Zitat Long Y, Du Z, Chen C, Wang W, He L, Mao X, Xu G, Zhao G, Li X, Dong W (2017) Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng 14(2):272–283CrossRef Long Y, Du Z, Chen C, Wang W, He L, Mao X, Xu G, Zhao G, Li X, Dong W (2017) Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng 14(2):272–283CrossRef
42.
Zurück zum Zitat Chen CF, Du ZJ, He L, Shi YJ, Wang JQ, Xu GQ, Zhang Y, Wu DM, Dong W (2019) Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance. IEEE Access 7:169107–169122CrossRef Chen CF, Du ZJ, He L, Shi YJ, Wang JQ, Xu GQ, Zhang Y, Wu DM, Dong W (2019) Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance. IEEE Access 7:169107–169122CrossRef
43.
Zurück zum Zitat Chen B, Zhong CH, Zhao X, Ma H, Guan X, Li X, Liang FY, Cheng JCY, Qin L, Law SW, Liao WH (2017) A wearable exoskeleton suit for motion assistance to paralysed patients. J Orthop Transl 11:7–18 Chen B, Zhong CH, Zhao X, Ma H, Guan X, Li X, Liang FY, Cheng JCY, Qin L, Law SW, Liao WH (2017) A wearable exoskeleton suit for motion assistance to paralysed patients. J Orthop Transl 11:7–18
44.
Zurück zum Zitat Zhu A, He S, He D, Liu Y (2016) Conceptual design of customized lower limb exoskeleton rehabilitation robot based on axiomatic design. Procedia CIRP 53:219–224CrossRef Zhu A, He S, He D, Liu Y (2016) Conceptual design of customized lower limb exoskeleton rehabilitation robot based on axiomatic design. Procedia CIRP 53:219–224CrossRef
45.
Zurück zum Zitat Jin X, Zhu S, Zhu X, Chen Q, Zhang X (2017) Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human–robot interaction. Adv Mech Eng 9(2):1687814016686665CrossRef Jin X, Zhu S, Zhu X, Chen Q, Zhang X (2017) Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human–robot interaction. Adv Mech Eng 9(2):1687814016686665CrossRef
46.
Zurück zum Zitat Hyon SH, Morimoto J, Matsubara T, Noda T, Kawato M (2011) XoR: hybrid drive exoskeleton robot that can balance. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 3975–3981. IEEE Hyon SH, Morimoto J, Matsubara T, Noda T, Kawato M (2011) XoR: hybrid drive exoskeleton robot that can balance. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 3975–3981. IEEE
47.
Zurück zum Zitat Matsubara T, Uchikata A, Morimoto J (2012) Full-body exoskeleton robot control for walking assistance by style-phase adaptive pattern generation. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 3914–3920. IEEE Matsubara T, Uchikata A, Morimoto J (2012) Full-body exoskeleton robot control for walking assistance by style-phase adaptive pattern generation. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 3914–3920. IEEE
48.
Zurück zum Zitat Bayon C, Ramírez O, Serrano JI, Del Castillo MD, Pérez-Somarriba A, Belda-Lois JM, Martínez-Caballero I, Lerma-Lara S, Cifuentes C, Frizera A, Rocon E (2017) Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robot Auton Syst 91:101–114CrossRef Bayon C, Ramírez O, Serrano JI, Del Castillo MD, Pérez-Somarriba A, Belda-Lois JM, Martínez-Caballero I, Lerma-Lara S, Cifuentes C, Frizera A, Rocon E (2017) Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robot Auton Syst 91:101–114CrossRef
49.
Zurück zum Zitat Bayón C, Martín-Lorenzo T, Moral-Saiz B, Ramírez Ó, Pérez-Somarriba Á, Lerma-Lara S, Martínez I, Rocon E (2018) A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation. J Neuroeng Rehabil 15(1):69CrossRef Bayón C, Martín-Lorenzo T, Moral-Saiz B, Ramírez Ó, Pérez-Somarriba Á, Lerma-Lara S, Martínez I, Rocon E (2018) A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation. J Neuroeng Rehabil 15(1):69CrossRef
50.
Zurück zum Zitat Aycardi LF, Cifuentes CA, Múnera M, Bayón C, Ramírez O, Lerma S, Frizera A, Rocon E (2019) Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J Neuroeng Rehabil 16(1):15CrossRef Aycardi LF, Cifuentes CA, Múnera M, Bayón C, Ramírez O, Lerma S, Frizera A, Rocon E (2019) Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J Neuroeng Rehabil 16(1):15CrossRef
51.
Zurück zum Zitat Mohan S, Mohanta JK, Kurtenbach S, Paris J, Corves B, Huesing M (2017) Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech Mach Theory 112:272–294CrossRef Mohan S, Mohanta JK, Kurtenbach S, Paris J, Corves B, Huesing M (2017) Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech Mach Theory 112:272–294CrossRef
52.
Zurück zum Zitat Vasanthakumar M, Vinod B, Mohanta JK, Mohan S (2019) Design and robust motion control of a planar 1P-2P RP hybrid manipulator for lower limb rehabilitation applications. J Intell Robot Syst 96(1):17–30CrossRef Vasanthakumar M, Vinod B, Mohanta JK, Mohan S (2019) Design and robust motion control of a planar 1P-2P RP hybrid manipulator for lower limb rehabilitation applications. J Intell Robot Syst 96(1):17–30CrossRef
53.
Zurück zum Zitat Baser O, Kizilhan H, Kilic E (2016) Mechanical design of a biomimetic compliant lower limb exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC), pp 60–65. IEEE Baser O, Kizilhan H, Kilic E (2016) Mechanical design of a biomimetic compliant lower limb exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC), pp 60–65. IEEE
54.
Zurück zum Zitat Baser O, Kizilhan H, Kilic E (2019) Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. J Braz Soc Mech Sci Eng 41(5):226CrossRef Baser O, Kizilhan H, Kilic E (2019) Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. J Braz Soc Mech Sci Eng 41(5):226CrossRef
55.
Zurück zum Zitat Sasaki D, Noritsugu T, Takaiwa M (2013) Development of pneumatic lower limb power assist wear driven with wearable air supply system. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 4440–4445. IEEE Sasaki D, Noritsugu T, Takaiwa M (2013) Development of pneumatic lower limb power assist wear driven with wearable air supply system. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 4440–4445. IEEE
56.
Zurück zum Zitat Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–8. IEEE Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–8. IEEE
57.
Zurück zum Zitat Nakamura T, Saito K, Wang Z, Kosuge K (2005) Realizing model-based wearable antigravity muscles support with dynamics terms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 2694–2699. IEEE Nakamura T, Saito K, Wang Z, Kosuge K (2005) Realizing model-based wearable antigravity muscles support with dynamics terms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 2694–2699. IEEE
58.
Zurück zum Zitat Chen F, Yu Y, Ge Y, Sun J, Deng X (2007) WPAL for enhancing human strength and endurance during walking. In: 2007 International conference on information acquisition, pp 487–491. IEEE Chen F, Yu Y, Ge Y, Sun J, Deng X (2007) WPAL for enhancing human strength and endurance during walking. In: 2007 International conference on information acquisition, pp 487–491. IEEE
59.
Zurück zum Zitat He H, Kiguchi K (2007) A study on EMG-based control of exoskeleton robots for human lower-limb motion assist. In: 2007 6th International special topic conference on information technology applications in biomedicine, pp 292–295. IEEE He H, Kiguchi K (2007) A study on EMG-based control of exoskeleton robots for human lower-limb motion assist. In: 2007 6th International special topic conference on information technology applications in biomedicine, pp 292–295. IEEE
60.
Zurück zum Zitat Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12(1):54CrossRef Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12(1):54CrossRef
61.
Zurück zum Zitat Wu J, Gao J, Song R, Li R, Li Y, Jiang L (2016) The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 33:13–22CrossRef Wu J, Gao J, Song R, Li R, Li Y, Jiang L (2016) The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 33:13–22CrossRef
62.
Zurück zum Zitat Sánchez-Manchola M, Gómez-Vargas D, Casas-Bocanegra D, Múnera M, Cifuentes CA (2018) Development of a robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton. In: 2018 IEEE ANDESCON, pp 1–6. IEEE Sánchez-Manchola M, Gómez-Vargas D, Casas-Bocanegra D, Múnera M, Cifuentes CA (2018) Development of a robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton. In: 2018 IEEE ANDESCON, pp 1–6. IEEE
63.
Zurück zum Zitat Zhang X, Hashimoto M (2011) Synchronization based control for walking assist suit-evaluation on synchronization and assist effect. In: Key engineering materials, vol 464, pp 115–118. Trans Tech Publications Zhang X, Hashimoto M (2011) Synchronization based control for walking assist suit-evaluation on synchronization and assist effect. In: Key engineering materials, vol 464, pp 115–118. Trans Tech Publications
64.
Zurück zum Zitat Zhang X, Hashimoto M (2012) Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint support in walking. Mechatronics 22(1):33–44CrossRef Zhang X, Hashimoto M (2012) Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint support in walking. Mechatronics 22(1):33–44CrossRef
65.
Zurück zum Zitat Talaty M, Esquenazi A, Briceno JE (2013) Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–5. IEEE Talaty M, Esquenazi A, Briceno JE (2013) Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–5. IEEE
66.
Zurück zum Zitat Aphiratsakun N, Parnichkun M (2009) Balancing control of AIT leg exoskeleton using ZMP based FLC. Int J Adv Robot Syst 6(4):34CrossRef Aphiratsakun N, Parnichkun M (2009) Balancing control of AIT leg exoskeleton using ZMP based FLC. Int J Adv Robot Syst 6(4):34CrossRef
67.
Zurück zum Zitat Tagliamonte NL, Sergi F, Carpino G, Accoto D, Guglielmelli E (2013) Human-robot interaction tests on a novel robot for gait assistance. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE Tagliamonte NL, Sergi F, Carpino G, Accoto D, Guglielmelli E (2013) Human-robot interaction tests on a novel robot for gait assistance. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE
68.
Zurück zum Zitat Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4):428–432CrossRef Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4):428–432CrossRef
69.
Zurück zum Zitat Quintero H, Farris R, Hartigan C, Clesson I, Goldfarb M (2011) A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Injury Rehabil 17(1):25–33CrossRef Quintero H, Farris R, Hartigan C, Clesson I, Goldfarb M (2011) A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Injury Rehabil 17(1):25–33CrossRef
70.
Zurück zum Zitat Farris RJ, Quintero HA, Goldfarb M (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659CrossRef Farris RJ, Quintero HA, Goldfarb M (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659CrossRef
71.
Zurück zum Zitat Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL (2018) The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil 15(1):14CrossRef Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL (2018) The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil 15(1):14CrossRef
72.
Zurück zum Zitat Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “ABLE” for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4):372–380CrossRef Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “ABLE” for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4):372–380CrossRef
73.
Zurück zum Zitat Belforte G, Gastaldi L, Sorli M (2001) Pneumatic active gait orthosis. Mechatronics 11(3):301–323CrossRef Belforte G, Gastaldi L, Sorli M (2001) Pneumatic active gait orthosis. Mechatronics 11(3):301–323CrossRef
74.
Zurück zum Zitat Yeh TJ, Wu MJ, Lu TJ, Wu FK, Huang CR (2010) Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 20(6):686–697CrossRef Yeh TJ, Wu MJ, Lu TJ, Wu FK, Huang CR (2010) Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 20(6):686–697CrossRef
75.
Zurück zum Zitat Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23CrossRef Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23CrossRef
76.
Zurück zum Zitat Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209CrossRef Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209CrossRef
77.
Zurück zum Zitat Kao PC, Lewis CL, Ferris DP (2010) Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech 43(7):1401–1407CrossRef Kao PC, Lewis CL, Ferris DP (2010) Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech 43(7):1401–1407CrossRef
78.
Zurück zum Zitat Chen G, Qi P, Guo Z, Yu H (2016) Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech Mach Theory 103:51–64CrossRef Chen G, Qi P, Guo Z, Yu H (2016) Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech Mach Theory 103:51–64CrossRef
79.
Zurück zum Zitat Winter DA (2009) Biomechanics and motor control of human movement. Wiley, HobokenCrossRef Winter DA (2009) Biomechanics and motor control of human movement. Wiley, HobokenCrossRef
80.
Zurück zum Zitat Lenzi T, Carrozza MC, Agrawal SK (2013) Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans Neural Syst Rehabil Eng 21(6):938–948CrossRef Lenzi T, Carrozza MC, Agrawal SK (2013) Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans Neural Syst Rehabil Eng 21(6):938–948CrossRef
81.
Zurück zum Zitat Ronsse R, Koopman B, Vitiello N, Lenzi T, De Rossi, SMM, Van Den Kieboom J, Van Asseldonk E, Carrozza MC, Van Der Kooij H, Ijspeert AJ (2011) Oscillator-based walking assistance: a model-free approach. In 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE Ronsse R, Koopman B, Vitiello N, Lenzi T, De Rossi, SMM, Van Den Kieboom J, Van Asseldonk E, Carrozza MC, Van Der Kooij H, Ijspeert AJ (2011) Oscillator-based walking assistance: a model-free approach. In 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE
82.
Zurück zum Zitat Aguirre-Ollinger G (2013) Learning muscle activation patterns via nonlinear oscillators: application to lower-limb assistance. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 1182–1189. IEEE Aguirre-Ollinger G (2013) Learning muscle activation patterns via nonlinear oscillators: application to lower-limb assistance. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 1182–1189. IEEE
83.
Zurück zum Zitat Yu Y, Liang W, Ge Y (2011) Jacobian analysis for parallel mechanism using on human walking power assisting. In: 2011 IEEE international conference on mechatronics and automation, pp 282–288. IEEE Yu Y, Liang W, Ge Y (2011) Jacobian analysis for parallel mechanism using on human walking power assisting. In: 2011 IEEE international conference on mechatronics and automation, pp 282–288. IEEE
84.
Zurück zum Zitat Do Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M (2008) Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artif Organs 32(4):317–322CrossRef Do Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M (2008) Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artif Organs 32(4):317–322CrossRef
85.
Zurück zum Zitat Lewis CL, Ferris DP (2011) Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech 44(5):789–793CrossRef Lewis CL, Ferris DP (2011) Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech 44(5):789–793CrossRef
86.
Zurück zum Zitat d’Elia N, Vanetti F, Cempini M, Pasquini G, Parri A, Rabuffetti M, Ferrarin M, Lova RM, Vitiello N (2017) Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots. J Neuroeng Rehabil 14(1):29CrossRef d’Elia N, Vanetti F, Cempini M, Pasquini G, Parri A, Rabuffetti M, Ferrarin M, Lova RM, Vitiello N (2017) Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots. J Neuroeng Rehabil 14(1):29CrossRef
87.
Zurück zum Zitat Guzmán CH, Blanco A, Brizuela JA, Gómez FA (2017) Robust control of a hip–joint rehabilitation robot. Biomed Signal Process 35:100–109CrossRef Guzmán CH, Blanco A, Brizuela JA, Gómez FA (2017) Robust control of a hip–joint rehabilitation robot. Biomed Signal Process 35:100–109CrossRef
88.
Zurück zum Zitat Junius K, Lefeber N, Swinnen E, Vanderborght B, Lefeber D (2017) Metabolic effects induced by a kinematically compatible hip exoskeleton during STS. IEEE Trans Biomed Eng 65(6):1399–1409CrossRef Junius K, Lefeber N, Swinnen E, Vanderborght B, Lefeber D (2017) Metabolic effects induced by a kinematically compatible hip exoskeleton during STS. IEEE Trans Biomed Eng 65(6):1399–1409CrossRef
89.
Zurück zum Zitat Junius K, Degelaen M, Lefeber N, Swinnen E, Vanderborght B, Lefeber D (2017) Bilateral, misalignment-compensating, full-DOF hip exoskeleton: design and kinematic validation. Appl Bionics Biomech 2017(5):1–14CrossRef Junius K, Degelaen M, Lefeber N, Swinnen E, Vanderborght B, Lefeber D (2017) Bilateral, misalignment-compensating, full-DOF hip exoskeleton: design and kinematic validation. Appl Bionics Biomech 2017(5):1–14CrossRef
90.
Zurück zum Zitat Chen B, Grazi L, Lanotte F, Vitiello N, Crea S (2018) A real-time lift detection strategy for a hip exoskeleton. Front Neurorobot 12:17CrossRef Chen B, Grazi L, Lanotte F, Vitiello N, Crea S (2018) A real-time lift detection strategy for a hip exoskeleton. Front Neurorobot 12:17CrossRef
91.
Zurück zum Zitat Chen B, Lanotte F, Grazi L, Vitiello N, Crea S (2019) Classification of lifting techniques for application of a robotic hip exoskeleton. Sensors. 19(4):963CrossRef Chen B, Lanotte F, Grazi L, Vitiello N, Crea S (2019) Classification of lifting techniques for application of a robotic hip exoskeleton. Sensors. 19(4):963CrossRef
92.
Zurück zum Zitat Lai WY, Ma H, Liao WH, Fong DTP, Chan KM (2013) HIP-KNEE control for gait assistance with powered knee orthosis. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), pp 762–767. IEEE Lai WY, Ma H, Liao WH, Fong DTP, Chan KM (2013) HIP-KNEE control for gait assistance with powered knee orthosis. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), pp 762–767. IEEE
93.
Zurück zum Zitat Pratt JE, Krupp BT, Morse CJ, Collins SH (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04, vol 3, pp 2430–2435. IEEE Pratt JE, Krupp BT, Morse CJ, Collins SH (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04, vol 3, pp 2430–2435. IEEE
94.
Zurück zum Zitat Fleischer C, Hommel G (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Robot 24(4):872–882CrossRef Fleischer C, Hommel G (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Robot 24(4):872–882CrossRef
95.
Zurück zum Zitat Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2012) Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments. IEEE Trans Neural Syst Rehabil Eng 20(1):68–77CrossRef Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2012) Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments. IEEE Trans Neural Syst Rehabil Eng 20(1):68–77CrossRef
96.
Zurück zum Zitat Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng 60(6):1636–1644CrossRef Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng 60(6):1636–1644CrossRef
97.
Zurück zum Zitat Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW (2013) The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthet Orthot Int 37(5):411–414CrossRef Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW (2013) The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthet Orthot Int 37(5):411–414CrossRef
98.
Zurück zum Zitat Kim K, Yu CH, Jeong GY, Heo M, Kwon TK (2013) Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback. J Mech Sci Technol 27(10):3161–3169CrossRef Kim K, Yu CH, Jeong GY, Heo M, Kwon TK (2013) Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback. J Mech Sci Technol 27(10):3161–3169CrossRef
99.
Zurück zum Zitat Karavas N, Ajoudani A, Tsagarakis N, Saglia J, Bicchi A, Caldwell D (2013) Tele-impedance based stiffness and motion augmentation for a knee exoskeleton device. In: 2013 IEEE international conference on robotics and automation, pp 2194–2200. IEEE Karavas N, Ajoudani A, Tsagarakis N, Saglia J, Bicchi A, Caldwell D (2013) Tele-impedance based stiffness and motion augmentation for a knee exoskeleton device. In: 2013 IEEE international conference on robotics and automation, pp 2194–2200. IEEE
100.
Zurück zum Zitat Spring AN, Kofman J, Lemaire ED (2012) Design and evaluation of an orthotic knee-extension assist. IEEE Trans Neural Syst Rehabil Eng 20(5):678–687CrossRef Spring AN, Kofman J, Lemaire ED (2012) Design and evaluation of an orthotic knee-extension assist. IEEE Trans Neural Syst Rehabil Eng 20(5):678–687CrossRef
101.
Zurück zum Zitat Dollar AM, Herr H (2008) Design of a quasi-passive knee exoskeleton to assist running. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 747–754. IEEE Dollar AM, Herr H (2008) Design of a quasi-passive knee exoskeleton to assist running. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 747–754. IEEE
102.
Zurück zum Zitat Madani T, Daachi B, Djouani K (2016) Non-singular terminal sliding mode controller: application to an actuated exoskeleton. Mechatronics 33:136–145CrossRef Madani T, Daachi B, Djouani K (2016) Non-singular terminal sliding mode controller: application to an actuated exoskeleton. Mechatronics 33:136–145CrossRef
103.
Zurück zum Zitat Sherwani KI, Kumar N, Chemori A, Khan M, Mohammed S (2020) RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Robot Auton Syst 124:103354CrossRef Sherwani KI, Kumar N, Chemori A, Khan M, Mohammed S (2020) RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Robot Auton Syst 124:103354CrossRef
104.
Zurück zum Zitat Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP (2007) Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait Posture 25(4):620–627CrossRef Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP (2007) Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait Posture 25(4):620–627CrossRef
105.
Zurück zum Zitat Polinkovsky A, Bachmann RJ, Kern NI, Quinn, RD (2012) An ankle foot orthosis with insertion point eccentricity control. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 1603–1608. IEEE Polinkovsky A, Bachmann RJ, Kern NI, Quinn, RD (2012) An ankle foot orthosis with insertion point eccentricity control. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 1603–1608. IEEE
106.
Zurück zum Zitat Takemura H, Onodera T, Ming D, Mizoguchi H (2012) Design and control of a wearable stewart platform-type ankle-foot assistive device. Int J Adv Robot Syst 9(5):202CrossRef Takemura H, Onodera T, Ming D, Mizoguchi H (2012) Design and control of a wearable stewart platform-type ankle-foot assistive device. Int J Adv Robot Syst 9(5):202CrossRef
107.
Zurück zum Zitat Leclair J, Pardoel S, Helal A, Doumit M (2020) Development of an unpowered ankle exoskeleton for walking assist. Disabil Rehabil Assist Technol 15(1):1–13CrossRef Leclair J, Pardoel S, Helal A, Doumit M (2020) Development of an unpowered ankle exoskeleton for walking assist. Disabil Rehabil Assist Technol 15(1):1–13CrossRef
108.
Zurück zum Zitat Kim K, Kim JJ, Kang SR, Jeong, GY, Kwon TK (2010) Analysis of the assistance characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton. In: International conference on control automation and systems (ICCAS 2010), pp 576–579. IEEE Kim K, Kim JJ, Kang SR, Jeong, GY, Kwon TK (2010) Analysis of the assistance characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton. In: International conference on control automation and systems (ICCAS 2010), pp 576–579. IEEE
109.
Zurück zum Zitat Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 12(1):24–31CrossRef Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 12(1):24–31CrossRef
110.
Zurück zum Zitat Malcolm P, Derave W, Galle S, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8(2):e56137CrossRef Malcolm P, Derave W, Galle S, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8(2):e56137CrossRef
111.
Zurück zum Zitat Malcolm P, Fiers P, Segers V, Van Caekenberghe I, Lenoir M, De Clercq D (2009) Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton. Gait Posture 30(3):322–327CrossRef Malcolm P, Fiers P, Segers V, Van Caekenberghe I, Lenoir M, De Clercq D (2009) Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton. Gait Posture 30(3):322–327CrossRef
112.
Zurück zum Zitat Erdogan A, Celebi B, Satici AC, Patoglu V (2017) Assist On-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Robots 41(3):743–758CrossRef Erdogan A, Celebi B, Satici AC, Patoglu V (2017) Assist On-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Robots 41(3):743–758CrossRef
113.
Zurück zum Zitat Mohammed S, Amirat Y, Rifai H (2012) Lower-limb movement assistance through wearable robots: state of the art and challenges. Adv Robot 26(1–2):1–22CrossRef Mohammed S, Amirat Y, Rifai H (2012) Lower-limb movement assistance through wearable robots: state of the art and challenges. Adv Robot 26(1–2):1–22CrossRef
114.
Zurück zum Zitat Mosher RS, S.o.A. Engineers (1967) Handyman to hardiman: society of automotive engineers. Popular Sci Mosher RS, S.o.A. Engineers (1967) Handyman to hardiman: society of automotive engineers. Popular Sci
115.
Zurück zum Zitat Gilbert KE, Callan PC (1968) Hardiman I prototype. General Electric Company, Schenectady, NY. GE Technical Report S-68-1081 Gilbert KE, Callan PC (1968) Hardiman I prototype. General Electric Company, Schenectady, NY. GE Technical Report S-68-1081
116.
Zurück zum Zitat Vukobratovic M, Hristic D, Stojiljkovic Z (1974) Development of active anthropomorphic exoskeletons. Med Biol Eng 12(1):66–80CrossRef Vukobratovic M, Hristic D, Stojiljkovic Z (1974) Development of active anthropomorphic exoskeletons. Med Biol Eng 12(1):66–80CrossRef
117.
Zurück zum Zitat Morimoto J, Noda T, Hyon SH (2012) Extraction of latent kinematic relationships between human users and assistive robots. In: 2012 IEEE international conference on robotics and automation, pp 3909–3915. IEEE Morimoto J, Noda T, Hyon SH (2012) Extraction of latent kinematic relationships between human users and assistive robots. In: 2012 IEEE international conference on robotics and automation, pp 3909–3915. IEEE
118.
Zurück zum Zitat Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: 9th International conference on rehabilitation robotics, 2005. ICORR 2005, pp 394–399. IEEE Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: 9th International conference on rehabilitation robotics, 2005. ICORR 2005, pp 394–399. IEEE
119.
Zurück zum Zitat Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv Robot 21(12):1441–1469CrossRef Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv Robot 21(12):1441–1469CrossRef
120.
Zurück zum Zitat Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, vol 1, pp 399–406. IEEE Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, vol 1, pp 399–406. IEEE
121.
Zurück zum Zitat Ikehara T (2010) Development of a closed-fitting-type walking assistance device on leg with a self-contained control system. J Robot Mechatron 22(3):380CrossRef Ikehara T (2010) Development of a closed-fitting-type walking assistance device on leg with a self-contained control system. J Robot Mechatron 22(3):380CrossRef
122.
Zurück zum Zitat Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge L (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–7. IEEE Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge L (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–7. IEEE
123.
Zurück zum Zitat Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y (2010) Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia. In: 2010 Annual international conference of the IEEE engineering in medicine and biology, pp 462–466. IEEE Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y (2010) Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia. In: 2010 Annual international conference of the IEEE engineering in medicine and biology, pp 462–466. IEEE
124.
Zurück zum Zitat Chen F, Yu Y, Ge Y, Fang Y (2009) WPAL for human power assist during walking using dynamic equation. In: 2009 International conference on mechatronics and automation, pp 1039–1043. IEEE Chen F, Yu Y, Ge Y, Fang Y (2009) WPAL for human power assist during walking using dynamic equation. In: 2009 International conference on mechatronics and automation, pp 1039–1043. IEEE
125.
Zurück zum Zitat Righetti L, Buchli J, Ijspeert AJ (2006) Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216(2):269–281MathSciNetMATHCrossRef Righetti L, Buchli J, Ijspeert AJ (2006) Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216(2):269–281MathSciNetMATHCrossRef
126.
Zurück zum Zitat Ronsse R, Lenzi T, Vitiello N, Koopman B, Van Asseldonk E, De Rossi SMM, Van Den Kieboom J, Van Der Kooij H, Carrozza MC, Ijspeert AJ (2011) Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput 49(10):1173CrossRef Ronsse R, Lenzi T, Vitiello N, Koopman B, Van Asseldonk E, De Rossi SMM, Van Den Kieboom J, Van Der Kooij H, Carrozza MC, Ijspeert AJ (2011) Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput 49(10):1173CrossRef
127.
Zurück zum Zitat Passino KM, Yurkovich S (1998) Fuzzy control, vol 42. Addison-Wesley, BostonMATH Passino KM, Yurkovich S (1998) Fuzzy control, vol 42. Addison-Wesley, BostonMATH
128.
Zurück zum Zitat Narayan J, Singla E, Soni S, Singla A (2018) Adaptive neuro-fuzzy inference system–based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. Proc Inst Mech Eng H 232(7):726–732CrossRef Narayan J, Singla E, Soni S, Singla A (2018) Adaptive neuro-fuzzy inference system–based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. Proc Inst Mech Eng H 232(7):726–732CrossRef
129.
Zurück zum Zitat Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, Hoboken Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, Hoboken
130.
Zurück zum Zitat Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res 25(5–6):561–573CrossRef Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res 25(5–6):561–573CrossRef
131.
Zurück zum Zitat Grazi L, Crea S, Parri A, Molino Lova R, Micera S, Vitiello N (2018) Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user’s lower-limb muscle activities at push off. Front Neurosci 12:71CrossRef Grazi L, Crea S, Parri A, Molino Lova R, Micera S, Vitiello N (2018) Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user’s lower-limb muscle activities at push off. Front Neurosci 12:71CrossRef
132.
Zurück zum Zitat Young AJ, Gannon H, Ferris DP (2017) A biomechanical comparison of proportional electromyography control to biological torque control using a powered hip exoskeleton. Front Bioeng Biotechnol 5:37CrossRef Young AJ, Gannon H, Ferris DP (2017) A biomechanical comparison of proportional electromyography control to biological torque control using a powered hip exoskeleton. Front Bioeng Biotechnol 5:37CrossRef
133.
Zurück zum Zitat Kalita B, Dwivedy SK (2018) Dynamic analysis of a parametrically excited golden Muga silk embedded pneumatic artificial muscle. In: 14th International conference on vibration engineering and technology of machinery (VETOMAC XIV), vol 211, p 02008. EDP Sciences Kalita B, Dwivedy SK (2018) Dynamic analysis of a parametrically excited golden Muga silk embedded pneumatic artificial muscle. In: 14th International conference on vibration engineering and technology of machinery (VETOMAC XIV), vol 211, p 02008. EDP Sciences
134.
Zurück zum Zitat Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, de Andrade MJ, Göktepe F, Göktepe Ö (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872CrossRef Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, de Andrade MJ, Göktepe F, Göktepe Ö (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872CrossRef
135.
Zurück zum Zitat Guo H, Liao WH (2011) Optimization of a multifunctional actuator utilizing magnetorheological fluids. In: 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 67–72. IEEE Guo H, Liao WH (2011) Optimization of a multifunctional actuator utilizing magnetorheological fluids. In: 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 67–72. IEEE
139.
Zurück zum Zitat Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, Harib O, Masselin M, Grizzle J, Ames AD (2018) Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 2804–2811. IEEE Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, Harib O, Masselin M, Grizzle J, Ames AD (2018) Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 2804–2811. IEEE
Metadaten
Titel
Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review
verfasst von
Bhaben Kalita
Jyotindra Narayan
Santosha Kumar Dwivedy
Publikationsdatum
23.06.2020
Verlag
Springer Netherlands
Erschienen in
International Journal of Social Robotics / Ausgabe 4/2021
Print ISSN: 1875-4791
Elektronische ISSN: 1875-4805
DOI
https://doi.org/10.1007/s12369-020-00662-9

Weitere Artikel der Ausgabe 4/2021

International Journal of Social Robotics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.