Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 4/2021

20.02.2021 | Original Research Article

Development of an Aluminum Brazing Sheet Product with Barrier Layer for High-Performance Automotive Heat Exchangers

verfasst von: H. Jin

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A high-strength aluminum brazing sheet product has been developed for automotive heat exchangers. It consists of commercial Al-Si clad, newly designed Al-Mn-Cu-Mg core, and pure aluminum barrier between the clad and core. The microstructure, mechanical properties, corrosion resistance, and braze-ability were investigated and compared with regular brazing sheets without barrier. The newly designed Al-Mn-Cu-Mg alloys are much stronger than commercial Al-Mn-Cu core alloys and the high strength is maintained up to 573.15 K (300 °C). However, liquid–solid interaction occurs extensively during brazing when the Al-Si clad contacts the Al-Mn-Cu-Mg core directly, resulting in degrading of mechanical properties and corrosion resistance. The barrier provides a physical separation between the clad and core, preventing not only the liquid–solid interaction, but also the solid diffusion of Si from clad to core and Mg from core to sheet surface. The accumulation of Si and Mg in the barrier leads to a high population density of Mg2Si precipitates, acting as a sacrificial band to delay the through-thickness corrosion. Meanwhile, the low Mg level in the sheet surface ensures high braze-ability for commercial flux brazing processes. The new sheet product is therefore suitable to high-performance automotive heat exchangers, especially the ones that may serve at temperatures above 473.15 K (200 °C).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] M.M. Schwartz: Brazing, ASM International, Materials Park, 1987. [1] M.M. Schwartz: Brazing, ASM International, Materials Park, 1987.
2.
Zurück zum Zitat [2] G. Humpston and D.M. Jacobson: Principle of Soldering and Brazing, ASM international, Materials Park, 1991. [2] G. Humpston and D.M. Jacobson: Principle of Soldering and Brazing, ASM international, Materials Park, 1991.
3.
Zurück zum Zitat [3] R. Woods: CAB Brazing Metallurgy, 12th Annual International Invitational Aluminum Brazing Seminar, AFC Holcroft, Novi, 2007. [3] R. Woods: CAB Brazing Metallurgy, 12th Annual International Invitational Aluminum Brazing Seminar, AFC Holcroft, Novi, 2007.
4.
Zurück zum Zitat [4] M.P. Groover: Fundamentals of Modern Manufacturing: Materials Processes and Systems, Wiley, Hoboken, 2007. [4] M.P. Groover: Fundamentals of Modern Manufacturing: Materials Processes and Systems, Wiley, Hoboken, 2007.
5.
Zurück zum Zitat J. Liu: NOCOLOK Flux and Aluminum Brazing, SAE Technical Paper 960244, 1996. J. Liu: NOCOLOK Flux and Aluminum Brazing, SAE Technical Paper 960244, 1996.
6.
Zurück zum Zitat [6] H. Jin, J. Liang, Y. Zeng and M. S. Kozdras: SAE Int. J. Mater. Manf., 2015, vol. 8(3), pp. 736-43.CrossRef [6] H. Jin, J. Liang, Y. Zeng and M. S. Kozdras: SAE Int. J. Mater. Manf., 2015, vol. 8(3), pp. 736-43.CrossRef
7.
Zurück zum Zitat [7] H. Jin, M.S. Kozdras, B. Shalchi-Amirkhiz and S.L. Winkler: Metall. Mater. Trans., 2018, vol. 49A, pp. 3091-3108.CrossRef [7] H. Jin, M.S. Kozdras, B. Shalchi-Amirkhiz and S.L. Winkler: Metall. Mater. Trans., 2018, vol. 49A, pp. 3091-3108.CrossRef
8.
Zurück zum Zitat [8] F.P. Incropera, D.P. DeWitt, T.L. Bergman and A.S. Lavine: Introduction to Heat Transfer, Wiley, Hoboken, 2007. [8] F.P. Incropera, D.P. DeWitt, T.L. Bergman and A.S. Lavine: Introduction to Heat Transfer, Wiley, Hoboken, 2007.
9.
Zurück zum Zitat [9] E.A.D. Saunders: Heat Exchanges: Selection, Design and Construction, Wiley, New York, 1988. [9] E.A.D. Saunders: Heat Exchanges: Selection, Design and Construction, Wiley, New York, 1988.
10.
Zurück zum Zitat [10] J.B. Heywood: Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988. [10] J.B. Heywood: Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
11.
Zurück zum Zitat [11] B. Hu, J.W.G. Turner, S. Akehurst, C. Brace and C. Copeland: J. Auto. Eng., 2017, vol. 231(4), pp. 435-56.CrossRef [11] B. Hu, J.W.G. Turner, S. Akehurst, C. Brace and C. Copeland: J. Auto. Eng., 2017, vol. 231(4), pp. 435-56.CrossRef
12.
Zurück zum Zitat [12] H. Jin: Metall. Mater. Trans., 2019, vol. 49A, pp. 3091-3108. [12] H. Jin: Metall. Mater. Trans., 2019, vol. 49A, pp. 3091-3108.
13.
Zurück zum Zitat [13] M. Nylén, U. Gustavsson, B. Hutchinson and A. Örtnäs: Mater. Sci. Forum, 2000, vol. 331-337, pp. 1737-42.CrossRef [13] M. Nylén, U. Gustavsson, B. Hutchinson and A. Örtnäs: Mater. Sci. Forum, 2000, vol. 331-337, pp. 1737-42.CrossRef
14.
Zurück zum Zitat S.D. Meijers: Corrosion of aluminium brazing sheet, Ph.D. Thesis, Delft University of Technology, 2002. S.D. Meijers: Corrosion of aluminium brazing sheet, Ph.D. Thesis, Delft University of Technology, 2002.
15.
Zurück zum Zitat [15] A.J. Wittebrood, S. Desikan, R. Boom and L. Katgerman: Mater. Sci. Forum, 2006, vol. 519-521, pp. 1151-56.CrossRef [15] A.J. Wittebrood, S. Desikan, R. Boom and L. Katgerman: Mater. Sci. Forum, 2006, vol. 519-521, pp. 1151-56.CrossRef
16.
Zurück zum Zitat A. Wittebrood: Microstructural changes in brazing sheet due to sold-liquid interaction, Ph.D. Thesis, Delft University of Technology, 2009. A. Wittebrood: Microstructural changes in brazing sheet due to sold-liquid interaction, Ph.D. Thesis, Delft University of Technology, 2009.
17.
Zurück zum Zitat P.E. Fortin, P.H. Marois and D.G.S. Evans: US Patents 5037707 and 5041343, August 1991. P.E. Fortin, P.H. Marois and D.G.S. Evans: US Patents 5037707 and 5041343, August 1991.
18.
Zurück zum Zitat A. Gray, G.J. Marshall and A.J.E. Flemming: International Patent WO 94/22633, October 1994. A. Gray, G.J. Marshall and A.J.E. Flemming: International Patent WO 94/22633, October 1994.
19.
Zurück zum Zitat [19] G.J. Marshall, R.K. Bolingbroke and A. Gray: Metall. Trans., 1993, vol. 24A, pp. 1935-42.CrossRef [19] G.J. Marshall, R.K. Bolingbroke and A. Gray: Metall. Trans., 1993, vol. 24A, pp. 1935-42.CrossRef
20.
Zurück zum Zitat G.J. Marshall, A.J.E. Flemming, A. Gray and R. Llewellyn: Proc. 4th Int. Conf. Aluminium and Alloys, Atlanta, USA, 1994, vol. 1, pp. 467-74. G.J. Marshall, A.J.E. Flemming, A. Gray and R. Llewellyn: Proc. 4th Int. Conf. Aluminium and Alloys, Atlanta, USA, 1994, vol. 1, pp. 467-74.
21.
Zurück zum Zitat R. Benedictus, S.D. Meijers, A.J. Wittebrood and J.H.W. de Witt: Proc. 6th Int. Conf. Aluminium and Alloys, The Japan Institute of Light Metals, Toyohashi, Japan, 1998, pp. 1577-82. R. Benedictus, S.D. Meijers, A.J. Wittebrood and J.H.W. de Witt: Proc. 6th Int. Conf. Aluminium and Alloys, The Japan Institute of Light Metals, Toyohashi, Japan, 1998, pp. 1577-82.
22.
Zurück zum Zitat J. Liu and T. Worlitz: NOCOLOK brazing aluminum heat exchangers, SAE Technical Paper 950117, 1995. J. Liu and T. Worlitz: NOCOLOK brazing aluminum heat exchangers, SAE Technical Paper 950117, 1995.
23.
Zurück zum Zitat [23] H. Jin, B. Shalchi-Amirkhiz and D.J. Lloyd: Metall. Mater. Trans., 2018, vol. 49A, pp. 1962-79.CrossRef [23] H. Jin, B. Shalchi-Amirkhiz and D.J. Lloyd: Metall. Mater. Trans., 2018, vol. 49A, pp. 1962-79.CrossRef
24.
25.
Zurück zum Zitat [25] L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth & Co Ltd., London, UK, 1976. [25] L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth & Co Ltd., London, UK, 1976.
26.
Zurück zum Zitat [26] A.S. Argon: Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford, UK, 2008. [26] A.S. Argon: Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford, UK, 2008.
27.
Zurück zum Zitat [27] J.E. Hatch: Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, 1984. [27] J.E. Hatch: Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, 1984.
28.
Zurück zum Zitat [28] T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, UK, 1993.CrossRef [28] T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, UK, 1993.CrossRef
29.
Zurück zum Zitat R. Benedictus, A. Burger and A.J.P. Haszler: US Patent 7226669B2, June 2007. R. Benedictus, A. Burger and A.J.P. Haszler: US Patent 7226669B2, June 2007.
30.
Zurück zum Zitat [30] T. Stenqvist, K. Bång, S. Kahl, A. Contet and O. Karlsson: Mater. Sci. Forum, 2014, vol. 794-796, pp. 1239-44.CrossRef [30] T. Stenqvist, K. Bång, S. Kahl, A. Contet and O. Karlsson: Mater. Sci. Forum, 2014, vol. 794-796, pp. 1239-44.CrossRef
31.
Zurück zum Zitat [31] S.A. Court, K.M. Gatenby and D.J. Lloyd: Mater. Sci. Eng., 2001, vol. A319-321, pp. 443-47.CrossRef [31] S.A. Court, K.M. Gatenby and D.J. Lloyd: Mater. Sci. Eng., 2001, vol. A319-321, pp. 443-47.CrossRef
32.
Zurück zum Zitat [32] D.J. Lloyd and S.A. Court: Mater. Sci. Tech., 2003, vol. 19, pp. 1349-54.CrossRef [32] D.J. Lloyd and S.A. Court: Mater. Sci. Tech., 2003, vol. 19, pp. 1349-54.CrossRef
33.
34.
Zurück zum Zitat S. Esmaeili, Precipitation hardening behaviour of AA6111, Ph.D. Thesis, University of British Columbia, 2002. S. Esmaeili, Precipitation hardening behaviour of AA6111, Ph.D. Thesis, University of British Columbia, 2002.
35.
Zurück zum Zitat ASTM G69-12, Standard Test Method for Measurement of Corrosion Potentials of Aluminum Alloys, ASTM International, West Conshohocken, PA, 2012. ASTM G69-12, Standard Test Method for Measurement of Corrosion Potentials of Aluminum Alloys, ASTM International, West Conshohocken, PA, 2012.
36.
Zurück zum Zitat [36] C. Vargel: Corrosion of Aluminium, Elsevier Science, Amsterdam, 2004.CrossRef [36] C. Vargel: Corrosion of Aluminium, Elsevier Science, Amsterdam, 2004.CrossRef
38.
Zurück zum Zitat [38] R.G. Buchheit: J. Electrochemical Society, 1995, vol. 142, pp. 3994-96.CrossRef [38] R.G. Buchheit: J. Electrochemical Society, 1995, vol. 142, pp. 3994-96.CrossRef
39.
Zurück zum Zitat [39] J.R. Davis: ASM Specialty Handbook: Aluminium and Aluminium alloys, ASM international, Materials Park, 1994. [39] J.R. Davis: ASM Specialty Handbook: Aluminium and Aluminium alloys, ASM international, Materials Park, 1994.
40.
Zurück zum Zitat [40] S. Fujikawa, K. Hirano and Y. Fukushima: Metall. Trans., 1978, vol. 9A, pp. 1811-15.CrossRef [40] S. Fujikawa, K. Hirano and Y. Fukushima: Metall. Trans., 1978, vol. 9A, pp. 1811-15.CrossRef
41.
Zurück zum Zitat [41] J. Verlinden and R. Gijbels: Adv. Mass. Spectrom., 1980, vol. 8A, pp. 485-95. [41] J. Verlinden and R. Gijbels: Adv. Mass. Spectrom., 1980, vol. 8A, pp. 485-95.
42.
Zurück zum Zitat [42] S. Fujikawa and K. Hirano: Def. Diff. Forum, 1989, vol. 66-69, pp. 447-52. [42] S. Fujikawa and K. Hirano: Def. Diff. Forum, 1989, vol. 66-69, pp. 447-52.
43.
Zurück zum Zitat [43] G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag and H. Mehrer: Z. Metallkd., 1995, vol. 86, pp. 122-30. [43] G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag and H. Mehrer: Z. Metallkd., 1995, vol. 86, pp. 122-30.
44.
Zurück zum Zitat [44] M.J. Benoit, M.A. Whitney, M.A. Wells, H. Jin and S. Winkler: Metall. Mater. Trans., 2017, vol. 48A, pp. 4645-654.CrossRef [44] M.J. Benoit, M.A. Whitney, M.A. Wells, H. Jin and S. Winkler: Metall. Mater. Trans., 2017, vol. 48A, pp. 4645-654.CrossRef
45.
Zurück zum Zitat [45] M.J. Benoit, R. Kaur, M.A. Wells, H. Jin, B. Shalchi-Amirkhiz and S. Winkler: J. Mater. Proc. Tech., 2018, vol. 254, pp. 353-60.CrossRef [45] M.J. Benoit, R. Kaur, M.A. Wells, H. Jin, B. Shalchi-Amirkhiz and S. Winkler: J. Mater. Proc. Tech., 2018, vol. 254, pp. 353-60.CrossRef
46.
Zurück zum Zitat [46] M.J. Benoit, H. Jin, B. Shalchi-Amirkhiz, S. Kurukuri, S. Winkler, M.J. Worswick and M.A. Wells, J. Mater. Proc. Tech., 2020, vol. 281, 116639.CrossRef [46] M.J. Benoit, H. Jin, B. Shalchi-Amirkhiz, S. Kurukuri, S. Winkler, M.J. Worswick and M.A. Wells, J. Mater. Proc. Tech., 2020, vol. 281, 116639.CrossRef
47.
Zurück zum Zitat H. Jin, The role of transition metal solutes in the deformation texture, recrystallization and grain growth in aluminum and its alloys, Ph.D. Thesis, Queen’s University at Kingston, 2001. H. Jin, The role of transition metal solutes in the deformation texture, recrystallization and grain growth in aluminum and its alloys, Ph.D. Thesis, Queen’s University at Kingston, 2001.
Metadaten
Titel
Development of an Aluminum Brazing Sheet Product with Barrier Layer for High-Performance Automotive Heat Exchangers
verfasst von
H. Jin
Publikationsdatum
20.02.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 4/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06172-1

Weitere Artikel der Ausgabe 4/2021

Metallurgical and Materials Transactions A 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.