Skip to main content
Erschienen in:

08.10.2024 | Engine and Emissions, Fuels and Lubricants

Development of an LSTM-CCF-MA Model for Predicting NOx Emission and Exhaust Temperature of a Diesel Engine

verfasst von: Haibo Sun, Gang Li, Jincheng Li, Zunqing Zheng, Qinglong Tang, Mingfa Yao

Erschienen in: International Journal of Automotive Technology | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The continuous reduction of NOx emission limits for heavy-duty diesel engines poses challenges to the control strategies of diesel engine. Developing an accurate prediction model for NOx emission and exhaust temperature is of great importance in reducing NOx emission. In this study, a time-series prediction model for exhaust temperature and NOx emission is built using LSTM neural network. The model's inputs are determined using sensitivity analysis. It can be also found that the prediction of exhaust temperature is highly sensitive to the past values of exhaust temperature and NOx emission. The impact of different types of cost functions on the model is investigated. According to the predictive abilities (the average after ten training runs) of models using different cost functions, a combination of the Mean Absolute Error (MAE) cost function and Huber cost function is selected to further improve the model performance. By introducing a novel combination cost function, multi-head attention mechanism, and convolutional neural network approach into the LSTM model, the LSTM-CCF-MA model was found to yield the best prediction results for NOx and exhaust temperature. The goodness of fit for all the training and test datasets exceeded 0.97.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Carbot-Rojas, D. A., Escobar-Jiménez, R. F., Gómez-Aguilar, J. F., & Téllez-Anguiano, A. C. (2017). A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines. Renewable and Sustainable Energy Reviews, 73, 1070–1085.MATH Carbot-Rojas, D. A., Escobar-Jiménez, R. F., Gómez-Aguilar, J. F., & Téllez-Anguiano, A. C. (2017). A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines. Renewable and Sustainable Energy Reviews, 73, 1070–1085.MATH
Zurück zum Zitat Duan, X., Xu, Z., Sun, X., Deng, B., & Liu, J. (2021). Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels. Energy, 231, 121069. Duan, X., Xu, Z., Sun, X., Deng, B., & Liu, J. (2021). Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels. Energy, 231, 121069.
Zurück zum Zitat Ehsani, M., Gao, Y. and Emadi, A. (2009). Modern electric, hybrid electric, and fuel cell vehicles : Fundamentals, theory, and design. Ehsani, M., Gao, Y. and Emadi, A. (2009). Modern electric, hybrid electric, and fuel cell vehicles : Fundamentals, theory, and design.
Zurück zum Zitat Filippone, A., & Bojdo, N. (2018). Statistical model for gas turbine engines exhaust emissions. Transportation Research Part D: Transport and Environment, 59, 451–463.MATH Filippone, A., & Bojdo, N. (2018). Statistical model for gas turbine engines exhaust emissions. Transportation Research Part D: Transport and Environment, 59, 451–463.MATH
Zurück zum Zitat Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Calendini, P. O. (2015). ECU-oriented models for NOx prediction. Part 1: a mean value engine model for NOx prediction. Proceedings of the Institution of Mechanical Engineers, Part D Journal of Automobile Engineering, 229, 992–1015.MATH Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Calendini, P. O. (2015). ECU-oriented models for NOx prediction. Part 1: a mean value engine model for NOx prediction. Proceedings of the Institution of Mechanical Engineers, Part D Journal of Automobile Engineering, 229, 992–1015.MATH
Zurück zum Zitat Harris, T. M., Mc Pherson, K., Rezaei, R., Kovacs, D., Rauch, H. and Huang, Y. (2019). Modeling of close-coupled SCR concepts to meet future cold start requirements for heavy-duty engines. In: SAE Technical Paper Series. Harris, T. M., Mc Pherson, K., Rezaei, R., Kovacs, D., Rauch, H. and Huang, Y. (2019). Modeling of close-coupled SCR concepts to meet future cold start requirements for heavy-duty engines. In: SAE Technical Paper Series.
Zurück zum Zitat Ji, J., Cheng, L., Wei, Y., Wang, J., Gao, X., Fang, M., & Wang, Q. (2020). Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model. Particuology, 49, 77–87. Ji, J., Cheng, L., Wei, Y., Wang, J., Gao, X., Fang, M., & Wang, Q. (2020). Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model. Particuology, 49, 77–87.
Zurück zum Zitat Kim, J., Park, J., Shin, S., Lee, Y., Min, K., Lee, S., & Kim, M. (2021). Prediction of engine NOx for virtual sensor using deep neural network and genetic algorithm. Oil & Gas Science and Technology—Revue d’IFP Energies nouvelles, 76, 72.MATH Kim, J., Park, J., Shin, S., Lee, Y., Min, K., Lee, S., & Kim, M. (2021). Prediction of engine NOx for virtual sensor using deep neural network and genetic algorithm. Oil & Gas Science and Technology—Revue d’IFP Energies nouvelles, 76, 72.MATH
Zurück zum Zitat Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., Damodharan, D., & Melvin Victor, D. P. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., Damodharan, D., & Melvin Victor, D. P. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304.
Zurück zum Zitat Kumar, A., Gaur, N., & Chakravarty, S. (2024). Analysis of spectrum sensing using deep learning algorithms: CNNs and RNNs. Ain Shams Engineering Journal, 15(3), 102505.MATH Kumar, A., Gaur, N., & Chakravarty, S. (2024). Analysis of spectrum sensing using deep learning algorithms: CNNs and RNNs. Ain Shams Engineering Journal, 15(3), 102505.MATH
Zurück zum Zitat Kumar, A., Narapareddy, V. T., Aditya Srikanth, V., Malapati, A., & Neti, L. B. M. (2020). Sarcasm detection using multi-head attention based bidirectional LSTM. IEEE Access, 8, 6388–6397. Kumar, A., Narapareddy, V. T., Aditya Srikanth, V., Malapati, A., & Neti, L. B. M. (2020). Sarcasm detection using multi-head attention based bidirectional LSTM. IEEE Access, 8, 6388–6397.
Zurück zum Zitat Li, H., Butts, K., Zaseck, K., Liao-McPherson, D. and Kolmanovsky, I. (2017). Emissions modeling of a light-duty diesel engine for model-based control design using multi-layer perceptron neural networks. In: SAE Technical Paper Series. Li, H., Butts, K., Zaseck, K., Liao-McPherson, D. and Kolmanovsky, I. (2017). Emissions modeling of a light-duty diesel engine for model-based control design using multi-layer perceptron neural networks. In: SAE Technical Paper Series.
Zurück zum Zitat Li, T., Wang, B., zhou, M., Zhang, L. and Zhao, X. (2018). Short-term load forecasting using optimized LSTM networks based on EMD. In: 2018 10th International Conference on Communications, Circuits and Systems (ICCCAS). Li, T., Wang, B., zhou, M., Zhang, L. and Zhao, X. (2018). Short-term load forecasting using optimized LSTM networks based on EMD. In: 2018 10th International Conference on Communications, Circuits and Systems (ICCCAS).
Zurück zum Zitat Li, N., Lu, G., Li, X., & Yan, Y. (2016). Prediction of NOx emissions from a biomass fired combustion process based on flame radical imaging and deep learning techniques. Combustion Science and Technology, 188, 233–246.MATH Li, N., Lu, G., Li, X., & Yan, Y. (2016). Prediction of NOx emissions from a biomass fired combustion process based on flame radical imaging and deep learning techniques. Combustion Science and Technology, 188, 233–246.MATH
Zurück zum Zitat Li, T., Skreiberg, Ø., Løvås, T., & Glarborg, P. (2019). Skeletal mechanisms for prediction of NOx emission in solid fuel combustion. Fuel, 254, 115569.MATH Li, T., Skreiberg, Ø., Løvås, T., & Glarborg, P. (2019). Skeletal mechanisms for prediction of NOx emission in solid fuel combustion. Fuel, 254, 115569.MATH
Zurück zum Zitat Mera, Z., Fonseca, N., López, J.-M., & Casanova, J. (2019). Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions. Applied Energy, 242, 1074–1089. Mera, Z., Fonseca, N., López, J.-M., & Casanova, J. (2019). Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions. Applied Energy, 242, 1074–1089.
Zurück zum Zitat Neely, G. D., Sharp, C. and Rao, S. (2020). CARB low NOx stage 3 program - modified engine calibration and hardware evaluations. In: SAE Technical Paper Series. Neely, G. D., Sharp, C. and Rao, S. (2020). CARB low NOx stage 3 program - modified engine calibration and hardware evaluations. In: SAE Technical Paper Series.
Zurück zum Zitat Oduro, S. D., Ha, Q. P., & Duc, H. (2016). Vehicular emissions prediction with CART-BMARS hybrid models. Transportation Research Part D: Transport and Environment, 49, 188–202.MATH Oduro, S. D., Ha, Q. P., & Duc, H. (2016). Vehicular emissions prediction with CART-BMARS hybrid models. Transportation Research Part D: Transport and Environment, 49, 188–202.MATH
Zurück zum Zitat Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information [http://data.europa.eu/eli/reg/2007/715/oj]. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information [http://​data.​europa.​eu/​eli/​reg/​2007/​715/​oj].
Zurück zum Zitat Schluckner, C., Gaber, C., Landfahrer, M., Demuth, M., & Hochenauer, C. (2020). Fast and accurate CFD-model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics. Fuel, 264, 116841. Schluckner, C., Gaber, C., Landfahrer, M., Demuth, M., & Hochenauer, C. (2020). Fast and accurate CFD-model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics. Fuel, 264, 116841.
Zurück zum Zitat Tang, X., Wu, P., Wang, Y., & Liu, Y. (2024). Recent advances in heavy metal poisoning mechanism and regeneration methods of selective catalytic reduction (SCR) denitration catalyst. Fuel, 355(2024), 129429. Tang, X., Wu, P., Wang, Y., & Liu, Y. (2024). Recent advances in heavy metal poisoning mechanism and regeneration methods of selective catalytic reduction (SCR) denitration catalyst. Fuel, 355(2024), 129429.
Zurück zum Zitat Tuttle, J. F., Blackburn, L. D., Andersson, K., & Powell, K. M. (2021). A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling. Applied Energy, 292, 116886. Tuttle, J. F., Blackburn, L. D., Andersson, K., & Powell, K. M. (2021). A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling. Applied Energy, 292, 116886.
Zurück zum Zitat Vihar, R., Baškovič, U. Ž, & Katrašnik, T. (2018). Real-time capable virtual NOx sensor for diesel engines based on a two-Zone thermodynamic model. Oil and Gas Sciences and Technology Revue d’IFP Energies nouvelles, 73, 11.MATH Vihar, R., Baškovič, U. Ž, & Katrašnik, T. (2018). Real-time capable virtual NOx sensor for diesel engines based on a two-Zone thermodynamic model. Oil and Gas Sciences and Technology Revue d’IFP Energies nouvelles, 73, 11.MATH
Zurück zum Zitat Wang, C., Liu, Y., Zheng, S., & Jiang, A. (2018). Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian process. Energy, 153, 149–158.MATH Wang, C., Liu, Y., Zheng, S., & Jiang, A. (2018). Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian process. Energy, 153, 149–158.MATH
Zurück zum Zitat Wang, X., Liu, W., Wang, Y., & Yang, G. (2022). A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM. Fuel, 310, 122486.MATH Wang, X., Liu, W., Wang, Y., & Yang, G. (2022). A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM. Fuel, 310, 122486.MATH
Zurück zum Zitat Wang, Z. F., & Peng, Z. R. (2024). Structural acceleration response reconstruction based on BiLSTM network and multi-head attention mechanism. Structures, 64, 106602.MATH Wang, Z. F., & Peng, Z. R. (2024). Structural acceleration response reconstruction based on BiLSTM network and multi-head attention mechanism. Structures, 64, 106602.MATH
Zurück zum Zitat Wen, B., Wu, X., Wu, K., Zhang, Q., & Zhang, X. (2021). Ca50 estimation based on Neural Network and smooth variable structure filter. ISA Transactions, 114, 499–507.MATH Wen, B., Wu, X., Wu, K., Zhang, Q., & Zhang, X. (2021). Ca50 estimation based on Neural Network and smooth variable structure filter. ISA Transactions, 114, 499–507.MATH
Zurück zum Zitat Xie, P., Gao, M., Zhang, H., Niu, Y., & Wang, X. (2020). Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network. Energy, 190, 116482.MATH Xie, P., Gao, M., Zhang, H., Niu, Y., & Wang, X. (2020). Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network. Energy, 190, 116482.MATH
Zurück zum Zitat Yang, G., Wang, Y., & Li, X. (2020). Prediction of the NOx emissions from thermal power plant using long-short term memory neural network. Energy, 192, 116597. Yang, G., Wang, Y., & Li, X. (2020). Prediction of the NOx emissions from thermal power plant using long-short term memory neural network. Energy, 192, 116597.
Zurück zum Zitat Zhou, Q., Shao, K., Wang, C., Zhang, Y., & Liu, Y. (2024). Experimental investigation on the characteristics of ammonia storage for heavy-duty diesel engine SCR catalyst. Fuel, 357(2024), 130014. Zhou, Q., Shao, K., Wang, C., Zhang, Y., & Liu, Y. (2024). Experimental investigation on the characteristics of ammonia storage for heavy-duty diesel engine SCR catalyst. Fuel, 357(2024), 130014.
Metadaten
Titel
Development of an LSTM-CCF-MA Model for Predicting NOx Emission and Exhaust Temperature of a Diesel Engine
verfasst von
Haibo Sun
Gang Li
Jincheng Li
Zunqing Zheng
Qinglong Tang
Mingfa Yao
Publikationsdatum
08.10.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 2/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00152-1