Skip to main content

2025 | OriginalPaper | Buchkapitel

Development of Artificial Intelligence-Based Rutting Damage Prediction Models for Granular Roads Under Superload Traffic

verfasst von : Yongsung Koh, Halil Ceylan, Sunghwan Kim, In Ho Cho

Erschienen in: Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 2

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unlike paved roads, granular or unpaved roads are prone to rutting when subjected to overweight traffic such as Implements of Husbandry (IoH) or Superheavy Loads (SHL), and regular maintenance is essential to maintain the proper shape of the road cross-section. While most granular roads are designed for low-volume traffic, they often experience transportation of heavy farm products to the marketplace, leading to significant rutting damage and associated maintenance costs. There is therefore a growing demand for mechanistic analysis of such IoHs and SHLs, also known as superloads, to prevent severe rutting dam- age. To address this issue, this study developed Artificial Neural Network (ANN)-based surrogate models to quantify rutting damages, primary structural defects in granular roads that result in permanent deformation both of the top granular layer and the subgrade. The models considered various road structural parameters and commonly-encountered superload types used in the Midwestern region of the U.S. Optimized ANN models for granular roads under superloads were derived by comparing prediction accuracies of ANN models developed using varying numbers of hidden layers and neurons and applying different back- propagation algorithms such as Levenberg–Marquardt, Bayesian Regularization, BFGS Quasi-Newton, Resilient Backpropagation, and Scaled Conjugate Gradient. The prediction models developed through this study were shown to be superior in predicting rutting damages, suggesting their potential to provide a basis for the Mechanistic-Empirical design of granular roads and their integration into granular surface defect-prediction models in the future, forming a comprehensive prediction framework for analyzing granular road system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Uzan J (2001) Jacob Uzan layer elastic analysis (JULEA) software. Technion University, Israel Uzan J (2001) Jacob Uzan layer elastic analysis (JULEA) software. Technion University, Israel
2.
Zurück zum Zitat ERES Consultants: ISLAB2000 finite element code for rigid pavement analysis (Version 3.6), ERES, Champaign, Illinois (1999) ERES Consultants: ISLAB2000 finite element code for rigid pavement analysis (Version 3.6), ERES, Champaign, Illinois (1999)
3.
Zurück zum Zitat Khazanovich L, Wang Q (2007) MnLayer: high-performance layered elastic analysis program. Transp Res Rec 2037(1):63–75CrossRef Khazanovich L, Wang Q (2007) MnLayer: high-performance layered elastic analysis program. Transp Res Rec 2037(1):63–75CrossRef
4.
Zurück zum Zitat Koh Y, Ceylan H, Kim S, Cho IH (2023) Mechanistic basis for permit fee decision of superloads traveling on low-volume roads using structural damage evaluation. Transportation Research Record, 03611981231156577 Koh Y, Ceylan H, Kim S, Cho IH (2023) Mechanistic basis for permit fee decision of superloads traveling on low-volume roads using structural damage evaluation. Transportation Research Record, 03611981231156577
5.
Zurück zum Zitat Koh Y, Ceylan H, Kim S, Cho IH (2022) Structural and fatigue analysis of jointed plain concrete pavement top-down and bottom-up transverse cracking subjected to superloads. Transp Res Rec 2476(9):76–93CrossRef Koh Y, Ceylan H, Kim S, Cho IH (2022) Structural and fatigue analysis of jointed plain concrete pavement top-down and bottom-up transverse cracking subjected to superloads. Transp Res Rec 2476(9):76–93CrossRef
6.
Zurück zum Zitat Koh Y, Ceylan H, Kim S, Cho IH (2024) An artificial-intelligence based approach for predicting structural damages of paved-road systems under superloads. Constr Build Mater 411:134257CrossRef Koh Y, Ceylan H, Kim S, Cho IH (2024) An artificial-intelligence based approach for predicting structural damages of paved-road systems under superloads. Constr Build Mater 411:134257CrossRef
Metadaten
Titel
Development of Artificial Intelligence-Based Rutting Damage Prediction Models for Granular Roads Under Superload Traffic
verfasst von
Yongsung Koh
Halil Ceylan
Sunghwan Kim
In Ho Cho
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8217-8_10