Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2018

07.06.2018 | SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

verfasst von: G. Gerstein, G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, H. J. Maier

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Buehler WJ, Gilfrich JW, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477CrossRef Buehler WJ, Gilfrich JW, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477CrossRef
2.
Zurück zum Zitat Cuthill JR, McAlister AJ, Williams ML (1968) Soft X-Ray Spectroscopy of Alloys: TiNi and the Ni–Al System. J Appl Phys 39:2204–2208CrossRef Cuthill JR, McAlister AJ, Williams ML (1968) Soft X-Ray Spectroscopy of Alloys: TiNi and the Ni–Al System. J Appl Phys 39:2204–2208CrossRef
3.
Zurück zum Zitat Otsuka K, Ren X (1999) Martensitic transformations in nonferrous shape memory alloys. Mater Sci Eng A273–275:89–105CrossRef Otsuka K, Ren X (1999) Martensitic transformations in nonferrous shape memory alloys. Mater Sci Eng A273–275:89–105CrossRef
4.
Zurück zum Zitat Sluiter M, Turchi PEA, Pinski FJ, Stocks GM (1992) Theoretical studies of phase stability in Ni-Al and NiTi alloys. J Phase Equilib 13:605–611CrossRef Sluiter M, Turchi PEA, Pinski FJ, Stocks GM (1992) Theoretical studies of phase stability in Ni-Al and NiTi alloys. J Phase Equilib 13:605–611CrossRef
5.
Zurück zum Zitat Luy Jianmin, Qingmiao Hu, Yang Rui (2009) A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations. J Mater Sci Technol 25:215–217 Luy Jianmin, Qingmiao Hu, Yang Rui (2009) A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations. J Mater Sci Technol 25:215–217
6.
Zurück zum Zitat Otsuka K, Wayman CM (1998) Shape memory materials. University Press, Cambridge Otsuka K, Wayman CM (1998) Shape memory materials. University Press, Cambridge
7.
Zurück zum Zitat Enami K, Nenno S (1971) Memory effect in Ni-36.8 At. Pct. Al martensite. Metall Transactions 2:1487–1490 Enami K, Nenno S (1971) Memory effect in Ni-36.8 At. Pct. Al martensite. Metall Transactions 2:1487–1490
8.
Zurück zum Zitat Au YK, Wayman CM (1972) Thermoelastic behavior of the martensitic transformation in β` NiAl alloys. Scripta Metall 6:1209–1214CrossRef Au YK, Wayman CM (1972) Thermoelastic behavior of the martensitic transformation in β` NiAl alloys. Scripta Metall 6:1209–1214CrossRef
9.
Zurück zum Zitat Kainuma R, Ishida K, Nishizawa T (1992) Thermoelastic martensite and shape memory effect in B2 base Ni–Al–Fe alloy with enhanced ductility. Metall Trans A 23A:1147–1153CrossRef Kainuma R, Ishida K, Nishizawa T (1992) Thermoelastic martensite and shape memory effect in B2 base Ni–Al–Fe alloy with enhanced ductility. Metall Trans A 23A:1147–1153CrossRef
10.
Zurück zum Zitat Enami K, Nenno S (1978) A new ordered phase in tempered 63.8 Ni–1Co–Al martensite. Trans JIM 19:571–580CrossRef Enami K, Nenno S (1978) A new ordered phase in tempered 63.8 Ni–1Co–Al martensite. Trans JIM 19:571–580CrossRef
11.
Zurück zum Zitat Kim HY, Miyazaki S (2004) Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scripta Mater 50:237–241CrossRef Kim HY, Miyazaki S (2004) Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scripta Mater 50:237–241CrossRef
12.
Zurück zum Zitat Firstov GS, Kosorukova TA, Koval YuN, Odnosum VV (2015) High entropy shape memory alloys. Mater Today 2S:S499–S504CrossRef Firstov GS, Kosorukova TA, Koval YuN, Odnosum VV (2015) High entropy shape memory alloys. Mater Today 2S:S499–S504CrossRef
13.
Zurück zum Zitat Firstov GS, Kosorukova TA, Koval YuN, Verhovlyuk PA (2015) Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials? Shape Mem Superelast 1:400–407CrossRef Firstov GS, Kosorukova TA, Koval YuN, Verhovlyuk PA (2015) Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials? Shape Mem Superelast 1:400–407CrossRef
14.
Zurück zum Zitat Lutterotti L (2015) MAUD: Materials Analysis Using Diffraction. A Rietveld extended program to perform the combined analysis. University of Trento, Italy Lutterotti L (2015) MAUD: Materials Analysis Using Diffraction. A Rietveld extended program to perform the combined analysis. University of Trento, Italy
15.
Zurück zum Zitat Chumlyakov YuI, Panchenko EYu, Ovsyannikov AV, Chusov SA, Kirillov VA, Karaman I, Maier HJ (2009) High-Temperature Superelasticity and the Shape-Memory Effect in [001] Co–Ni–Al Single Crystals. Phys Met Metall 107:194–205CrossRef Chumlyakov YuI, Panchenko EYu, Ovsyannikov AV, Chusov SA, Kirillov VA, Karaman I, Maier HJ (2009) High-Temperature Superelasticity and the Shape-Memory Effect in [001] Co–Ni–Al Single Crystals. Phys Met Metall 107:194–205CrossRef
16.
Zurück zum Zitat Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K (2001) Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl Phys Lett 79:3290–3292CrossRef Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K (2001) Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl Phys Lett 79:3290–3292CrossRef
17.
Zurück zum Zitat Tanaka Y, Oikawa K, Sutou Y, Omori T, Kainuma R, Ishida K (2006) Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure. Mater Sci Eng A 438–440:1054–1060CrossRef Tanaka Y, Oikawa K, Sutou Y, Omori T, Kainuma R, Ishida K (2006) Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure. Mater Sci Eng A 438–440:1054–1060CrossRef
18.
Zurück zum Zitat Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168–1183CrossRef Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59:1168–1183CrossRef
19.
Zurück zum Zitat Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloy Compd 417:96–99CrossRef Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloy Compd 417:96–99CrossRef
20.
Zurück zum Zitat Liu J, Zheng HX, Xia MX, Huang YL, Li JG (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys 52:935–938 Liu J, Zheng HX, Xia MX, Huang YL, Li JG (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys 52:935–938
21.
Zurück zum Zitat Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42:2472–2475CrossRef Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42:2472–2475CrossRef
22.
Zurück zum Zitat Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. J Phase Equil Diffus 27:75–82CrossRef Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co–Ni–Ga ferromagnetic shape memory alloy system. J Phase Equil Diffus 27:75–82CrossRef
23.
Zurück zum Zitat Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater 60:3545–3558CrossRef Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater 60:3545–3558CrossRef
24.
Zurück zum Zitat Hamilton RF, Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y, Zhang XY (2005) Transformation of Co–Ni–Al single crystals in tension. Scripta Mater 53:131–136CrossRef Hamilton RF, Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y, Zhang XY (2005) Transformation of Co–Ni–Al single crystals in tension. Scripta Mater 53:131–136CrossRef
25.
Zurück zum Zitat Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Eggeler G, Maier HJ (2015) Functional fatigue and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem Superelast 1:6–17CrossRef Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Eggeler G, Maier HJ (2015) Functional fatigue and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem Superelast 1:6–17CrossRef
26.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YuN (2006) High Temperature Shape Memory Alloys Problems and Prospects. J Intel Mater Syst Struct 17:1041–1047CrossRef Firstov GS, Van Humbeeck J, Koval YuN (2006) High Temperature Shape Memory Alloys Problems and Prospects. J Intel Mater Syst Struct 17:1041–1047CrossRef
27.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
28.
Zurück zum Zitat Firstov G, Koval Yu, Van Humbeeck J, Timoshevskii A, Kosorukova T, Verhovlyuk P (2015) Some physical principles of high temperature shape memory alloys design. In: Resnina N, Rubanik V (eds) Shape Memory Alloys: Properties, Technologies, Opportunities. Trans Tech Publications Inc., Zurich, pp 207–232 Firstov G, Koval Yu, Van Humbeeck J, Timoshevskii A, Kosorukova T, Verhovlyuk P (2015) Some physical principles of high temperature shape memory alloys design. In: Resnina N, Rubanik V (eds) Shape Memory Alloys: Properties, Technologies, Opportunities. Trans Tech Publications Inc., Zurich, pp 207–232
29.
Zurück zum Zitat Firstov G, Timoshevskii A, Kosorukova T, Koval Yu, Matviychuk Yu, Verhovlyuk P (2015) Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. MATEC Web Conf 33:06006CrossRef Firstov G, Timoshevskii A, Kosorukova T, Koval Yu, Matviychuk Yu, Verhovlyuk P (2015) Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. MATEC Web Conf 33:06006CrossRef
30.
Zurück zum Zitat Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRef Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRef
31.
Zurück zum Zitat Murty BS, Yeh JW, Ranganathan S (2014) High entropy alloys. Elsevier, OxfordCrossRef Murty BS, Yeh JW, Ranganathan S (2014) High entropy alloys. Elsevier, OxfordCrossRef
32.
Zurück zum Zitat Zhang Y, Zuo TT, Nang Z, Cao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high entropy alloys. Prog Mater Sci 61:1–93CrossRef Zhang Y, Zuo TT, Nang Z, Cao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high entropy alloys. Prog Mater Sci 61:1–93CrossRef
33.
Zurück zum Zitat Firstov SA (2014) Rogul’ TG, Krapivka NA, Ponomarev SS, Tkach VN, Kovylyaev VV, Gorban’ VF, Karpets MV (2014) Solid-solution hardening of a high-entropy AlTiVCrNbMo Alloy. Russ Metall 4:285–292CrossRef Firstov SA (2014) Rogul’ TG, Krapivka NA, Ponomarev SS, Tkach VN, Kovylyaev VV, Gorban’ VF, Karpets MV (2014) Solid-solution hardening of a high-entropy AlTiVCrNbMo Alloy. Russ Metall 4:285–292CrossRef
34.
Zurück zum Zitat Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRef Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRef
35.
Zurück zum Zitat Noebe RD, Cullers CL, Bowman RR (1992) The effect of strain rate and temperature on tensile properties of NiAl. J Mater Res 7:605–612CrossRef Noebe RD, Cullers CL, Bowman RR (1992) The effect of strain rate and temperature on tensile properties of NiAl. J Mater Res 7:605–612CrossRef
36.
Zurück zum Zitat Bowman RR, Noebe RD (1992) Development of NiAl and NiAl-based composites for structural applications: a status report. In: Antolovich SD, Stusrud RW, MacKay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (eds) Superalloys. The Minerals, Metals & Materials Society, Pittsburgh, pp 341–350 Bowman RR, Noebe RD (1992) Development of NiAl and NiAl-based composites for structural applications: a status report. In: Antolovich SD, Stusrud RW, MacKay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (eds) Superalloys. The Minerals, Metals & Materials Society, Pittsburgh, pp 341–350
37.
Zurück zum Zitat Noebe RD, Bowman RR, Nathal MV (1993) Physical and mechanical properties of the B2 compound NiAl. Int Mater Rev 38:193–232CrossRef Noebe RD, Bowman RR, Nathal MV (1993) Physical and mechanical properties of the B2 compound NiAl. Int Mater Rev 38:193–232CrossRef
38.
Zurück zum Zitat Kimura Y, Miura S, Suzuki T, Mishima Y (1994) Microstructrure and mechanical properties of two phase alloys based on the B2-type intermetallic compound CoAl in the Co-Ni-Al system. Mater Trans, JIM 35:800–807CrossRef Kimura Y, Miura S, Suzuki T, Mishima Y (1994) Microstructrure and mechanical properties of two phase alloys based on the B2-type intermetallic compound CoAl in the Co-Ni-Al system. Mater Trans, JIM 35:800–807CrossRef
39.
Zurück zum Zitat Wang L, Shen J, Zhang Y, Xu H, Fu H (2016) Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques. J Mater Res 31:646–654CrossRef Wang L, Shen J, Zhang Y, Xu H, Fu H (2016) Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques. J Mater Res 31:646–654CrossRef
Metadaten
Titel
Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa
verfasst von
G. Gerstein
G. S. Firstov
T. A. Kosorukova
Yu. N. Koval
H. J. Maier
Publikationsdatum
07.06.2018
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2018
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-0180-1

Weitere Artikel der Ausgabe 3/2018

Shape Memory and Superelasticity 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.