Skip to main content
Erschienen in: Cellulose 5/2019

19.02.2019 | Original Research

Development of fabric-based microfluidic devices by wax printing

verfasst von: Azadeh Nilghaz, Xiaoqing Liu, Luyao Ma, Qian Huang, Xiaonan Lu

Erschienen in: Cellulose | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabric has emerged as an alternative to paper for the fabrication of microfluidic devices. Fabric could be easily manufactured using various natural and synthetic materials that contain a wide variety of functional groups, which can participate in binding to different types of molecules without further functionalization. To allow a rapid fabrication of more sophisticated fabric-based devices, we demonstrate that a commercial wax printer can be used to print 2D and 3D devices on fabric, followed by melting wax into fabric with heat treatment. The heating temperature and time were optimized to create the devices. The relationship between the width of the originally printed lines and the formed hydrophobic barriers was also investigated. The developed microfluidic fabric-based analytical devices show great potentials for real-life applications using colorimetric assay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934CrossRefPubMed Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934CrossRefPubMed
Zurück zum Zitat Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893CrossRefPubMed Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893CrossRefPubMed
Zurück zum Zitat Bagherbeigi S, Corcoles Wicaksono DHB (2014) Cotton fabric as an immobilization matrix for low-cost and quick colorimetric enzyme-linked immunosorbent assay (ELISA). Anal Methods 6(18):7175–7180CrossRef Bagherbeigi S, Corcoles Wicaksono DHB (2014) Cotton fabric as an immobilization matrix for low-cost and quick colorimetric enzyme-linked immunosorbent assay (ELISA). Anal Methods 6(18):7175–7180CrossRef
Zurück zum Zitat Ballerini D, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13:769–787CrossRef Ballerini D, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13:769–787CrossRef
Zurück zum Zitat Bhandari P, Narahari T, Dendukuri D (2011) ‘Fab-chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 11(15):2493–2499CrossRefPubMed Bhandari P, Narahari T, Dendukuri D (2011) ‘Fab-chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 11(15):2493–2499CrossRefPubMed
Zurück zum Zitat Biermann CJ (1996) Handbook of pulping and papermaking. Academic Press, New York Biermann CJ (1996) Handbook of pulping and papermaking. Academic Press, New York
Zurück zum Zitat Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMed Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMed
Zurück zum Zitat Choi S, Kwon S, Kim H, Kim W, Kwon J, Lim MS, Lee HS, Choi KH (2017) Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci Rep 7:6424CrossRefPubMedPubMedCentral Choi S, Kwon S, Kim H, Kim W, Kwon J, Lim MS, Lee HS, Choi KH (2017) Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci Rep 7:6424CrossRefPubMedPubMedCentral
Zurück zum Zitat Das B, Das A, Kothari VK, Fangueiro R (2011) Development of mathematical model to predict vertical wicking behaviour. J Text Inst 102(11):957–970CrossRef Das B, Das A, Kothari VK, Fangueiro R (2011) Development of mathematical model to predict vertical wicking behaviour. J Text Inst 102(11):957–970CrossRef
Zurück zum Zitat Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82CrossRefPubMed Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82CrossRefPubMed
Zurück zum Zitat Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914CrossRef Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914CrossRef
Zurück zum Zitat Ganneboyina SR, Ghatak A (2012) Generation of air–water two-phase flow patterns by altering the helix angle in triple helical microchannels. Ind Eng Chem Res 51(27):9356–9364CrossRef Ganneboyina SR, Ghatak A (2012) Generation of air–water two-phase flow patterns by altering the helix angle in triple helical microchannels. Ind Eng Chem Res 51(27):9356–9364CrossRef
Zurück zum Zitat Henares TG, Yamada K, Takaki S, Suzuki K, Citterio D (2017) “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device. Sens Actuators B Chem 244:1129–1137CrossRef Henares TG, Yamada K, Takaki S, Suzuki K, Citterio D (2017) “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device. Sens Actuators B Chem 244:1129–1137CrossRef
Zurück zum Zitat Hollies NRS, Kaessinger MM, Bogaty H (1956) Water transport mechanisms in textile materials1 Part I: the role of yarn roughness in capillary-type penetration. Text Res J 26(11):829–835CrossRef Hollies NRS, Kaessinger MM, Bogaty H (1956) Water transport mechanisms in textile materials1 Part I: the role of yarn roughness in capillary-type penetration. Text Res J 26(11):829–835CrossRef
Zurück zum Zitat Jones SW, Thomas OM, Aref H (1989) Chaotic advection by laminar flow in a twisted pipe. J Fluid Mech 209:335–357CrossRef Jones SW, Thomas OM, Aref H (1989) Chaotic advection by laminar flow in a twisted pipe. J Fluid Mech 209:335–357CrossRef
Zurück zum Zitat Li X, Tian J, Shen W (2010) Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Interfaces 2(1):1–6CrossRefPubMed Li X, Tian J, Shen W (2010) Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Interfaces 2(1):1–6CrossRefPubMed
Zurück zum Zitat Ma L, Nilghaz A, Choi JR, Liu X, Lu X (2018) Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chem 246:437–441CrossRefPubMed Ma L, Nilghaz A, Choi JR, Liu X, Lu X (2018) Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chem 246:437–441CrossRefPubMed
Zurück zum Zitat Mahmud MA, Blondeel EJM, Kaddoura M, MacDonald BD (2018) Features in microfluidic paper-based devices made by laser cutting: how small can they be? Micromachines 9(5):220CrossRefPubMedCentral Mahmud MA, Blondeel EJM, Kaddoura M, MacDonald BD (2018) Features in microfluidic paper-based devices made by laser cutting: how small can they be? Micromachines 9(5):220CrossRefPubMedCentral
Zurück zum Zitat Malon RS, Chua KY, Wicaksono DH, Córcoles EP (2014) Cotton fabric-based electrochemical device for lactate measurement in saliva. Analyst 139(12):3009–3016CrossRefPubMed Malon RS, Chua KY, Wicaksono DH, Córcoles EP (2014) Cotton fabric-based electrochemical device for lactate measurement in saliva. Analyst 139(12):3009–3016CrossRefPubMed
Zurück zum Zitat Martinez AW, Phillips ST, Whitesides GM (2008a) Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS 105(50):19606–19611CrossRefPubMed Martinez AW, Phillips ST, Whitesides GM (2008a) Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS 105(50):19606–19611CrossRefPubMed
Zurück zum Zitat Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008b) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150CrossRefPubMedPubMedCentral Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008b) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150CrossRefPubMedPubMedCentral
Zurück zum Zitat Masoodi R, Pillai KM (2010) Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J 56(9):2257–2267 Masoodi R, Pillai KM (2010) Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J 56(9):2257–2267
Zurück zum Zitat Nie J, Zhang Y, Lin L (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84(15):6331–6335CrossRefPubMed Nie J, Zhang Y, Lin L (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84(15):6331–6335CrossRefPubMed
Zurück zum Zitat Nilghaz A, Lu X (2018) Detection of antibiotic residues in pork using paper-based microfluidic device coupled with filtration and concentration. Anal Chim Acta 1046:163–169CrossRefPubMed Nilghaz A, Lu X (2018) Detection of antibiotic residues in pork using paper-based microfluidic device coupled with filtration and concentration. Anal Chim Acta 1046:163–169CrossRefPubMed
Zurück zum Zitat Nilghaz A, Shen W (2015) Low-cost blood plasma separation method using salt functionalized paper. RSC Adv 5(66):53172–53179CrossRef Nilghaz A, Shen W (2015) Low-cost blood plasma separation method using salt functionalized paper. RSC Adv 5(66):53172–53179CrossRef
Zurück zum Zitat Nilghaz A, Wicaksono DHB, Gustiono D, Abdul Majid F, Supriyanto E, Abdul Kadir M (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12(1):209–218CrossRefPubMed Nilghaz A, Wicaksono DHB, Gustiono D, Abdul Majid F, Supriyanto E, Abdul Kadir M (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12(1):209–218CrossRefPubMed
Zurück zum Zitat Nilghaz A, Zhang L, Li M, Ballerini DR, Shen W (2014) Understanding thread properties for red blood cell antigen assays: weak ABO blood typing. ACS Appl Matter Interfaces 6(24):22209–22215CrossRef Nilghaz A, Zhang L, Li M, Ballerini DR, Shen W (2014) Understanding thread properties for red blood cell antigen assays: weak ABO blood typing. ACS Appl Matter Interfaces 6(24):22209–22215CrossRef
Zurück zum Zitat Nilghaz A, Bagherbaigi S, Lam CL, Mousavi SM, Crcoles EP, Wicaksono DHB (2015) Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based analytical device for effective point-of-care diagnostic. Microfluid Nanofluid 19(2):317–333CrossRef Nilghaz A, Bagherbaigi S, Lam CL, Mousavi SM, Crcoles EP, Wicaksono DHB (2015) Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based analytical device for effective point-of-care diagnostic. Microfluid Nanofluid 19(2):317–333CrossRef
Zurück zum Zitat Nilghaz A, Ballerini DR, Guan L, Li L, Shen W (2016) Red blood cell transport mechanisms in polyester thread-based blood typing devices. Anal Bioanal Chem 408(5):1365–1371CrossRefPubMed Nilghaz A, Ballerini DR, Guan L, Li L, Shen W (2016) Red blood cell transport mechanisms in polyester thread-based blood typing devices. Anal Bioanal Chem 408(5):1365–1371CrossRefPubMed
Zurück zum Zitat Parikesit GOF, Prasetia F, Pribadi GA, Simbolon DC, Pradhana GY, Prastowo AR, Gunawan A, Suryopratomo K, Kusumaningtyas I (2012) Textile-based microfluidics: modulated wetting, mixing, sorting, and energy harvesting. J Text Inst 103(10):1077–1087CrossRef Parikesit GOF, Prasetia F, Pribadi GA, Simbolon DC, Pradhana GY, Prastowo AR, Gunawan A, Suryopratomo K, Kusumaningtyas I (2012) Textile-based microfluidics: modulated wetting, mixing, sorting, and energy harvesting. J Text Inst 103(10):1077–1087CrossRef
Zurück zum Zitat Piscitelli F, Saccone G, Gianvito A, Cosentino, Mazzola L. (2016) Microcrystalline paraffin wax as fuel for Hybrid Rocket Engine. In: 6th European conference for aeronautics and space sciences Piscitelli F, Saccone G, Gianvito A, Cosentino, Mazzola L. (2016) Microcrystalline paraffin wax as fuel for Hybrid Rocket Engine. In: 6th European conference for aeronautics and space sciences
Zurück zum Zitat Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM (2010) Thread as amatrix for biomedical assays. ACS Appl Mater Interfaces 2(6):1722–1728CrossRefPubMed Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM (2010) Thread as amatrix for biomedical assays. ACS Appl Mater Interfaces 2(6):1722–1728CrossRefPubMed
Zurück zum Zitat Roman G (2014) Development of enhanced lateral flow test devices for point-of-care diagnostics. University of Rhode Island, ProQuest dissertations 1543927 Roman G (2014) Development of enhanced lateral flow test devices for point-of-care diagnostics. University of Rhode Island, ProQuest dissertations 1543927
Zurück zum Zitat Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefPubMed Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefPubMed
Zurück zum Zitat Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living materials, influencing its deconstruction towards a biobased composite. Materials 9(8):618CrossRefPubMedCentral Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living materials, influencing its deconstruction towards a biobased composite. Materials 9(8):618CrossRefPubMedCentral
Zurück zum Zitat Yager P, Edwards T, Fu E (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefPubMed Yager P, Edwards T, Fu E (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefPubMed
Zurück zum Zitat Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144CrossRefPubMed Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144CrossRefPubMed
Zurück zum Zitat Yao Y, Zhang C (2016) A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed Microdevices 18(5):1–9CrossRef Yao Y, Zhang C (2016) A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed Microdevices 18(5):1–9CrossRef
Zurück zum Zitat Yu B, James Lee L (2000) A simplified in-plane permeability model for textile fabrics. Polym Compos 21(5):660–685CrossRef Yu B, James Lee L (2000) A simplified in-plane permeability model for textile fabrics. Polym Compos 21(5):660–685CrossRef
Metadaten
Titel
Development of fabric-based microfluidic devices by wax printing
verfasst von
Azadeh Nilghaz
Xiaoqing Liu
Luyao Ma
Qian Huang
Xiaonan Lu
Publikationsdatum
19.02.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02317-z

Weitere Artikel der Ausgabe 5/2019

Cellulose 5/2019 Zur Ausgabe