Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2018

27.04.2018

Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing

verfasst von: Sinan Kandemir

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is a challenging task to effectively incorporate graphene nanoplatelets (GNPs) which have recently emerged as potential reinforcement for strengthening metals into magnesium-based matrices by conventional solidification processes due to their large surface areas and poor wettability. A solidification processing which combines mechanical stirring and ultrasonic dispersion of reinforcements in liquid matrix was employed to develop AZ91 magnesium alloy matrix composites reinforced with 0.25 and 0.5 wt.% GNPs. The microstructural studies conducted with scanning and transmission electron microscopes revealed that fairly uniform distribution and dispersion of GNPs through the matrix were achieved due to effective combination of mechanical and ultrasonic stirring. The GNPs embedded into the magnesium matrix led to significant enhancement in the hardness, tensile strength and ductility of the composites compared to those of unreinforced AZ91 alloy. The strength enhancement was predominantly attributed to the grain refinement by the GNP addition and dislocation generation strengthening due to the coefficient of thermal expansion mismatch between the matrix and reinforcement. The improved ductility was attributed to the refinement of β eutectics by transforming from lamellar to the divorced eutectics due to the GNP additions. In addition, the strengthening efficiency of the composite with 0.25 wt.% GNP was found to be higher than those of the composite with 0.5 wt.% GNP as the agglomeration tendency of GNPs is increased with increasing GNP content. These results were compared with those of the GNP-reinforced magnesium composites reported in the literature, indicating the potential of the process introduced in this study in terms of fabricating light and high-performance metal matrix composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Blawert, N. Hort, and K.U. Kainer, Automotive Applications of Magnesium and its Alloys, Trans. Indian Inst. Met., 2004, 57, p 397–408 C. Blawert, N. Hort, and K.U. Kainer, Automotive Applications of Magnesium and its Alloys, Trans. Indian Inst. Met., 2004, 57, p 397–408
2.
Zurück zum Zitat M. Gupta and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, Wiley, Hoboken, 2011CrossRef M. Gupta and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites, Wiley, Hoboken, 2011CrossRef
3.
Zurück zum Zitat M. Gupta, M.O. Lai, and D. Saravanaranganathan, Synthesis, Microstructure and Properties Characterization of Disintegrated Melt Deposited Mg/SiC Composites, J. Mater. Sci., 2000, 35, p 2155–2165CrossRef M. Gupta, M.O. Lai, and D. Saravanaranganathan, Synthesis, Microstructure and Properties Characterization of Disintegrated Melt Deposited Mg/SiC Composites, J. Mater. Sci., 2000, 35, p 2155–2165CrossRef
4.
Zurück zum Zitat R.A. Saravanan and M.K. Surappa, Fabrication and Characterization of Pure Magnesium-30 vol.% SiCp Particle Composite, Mater. Sci. Eng. A, 2000, 276, p 108–116CrossRef R.A. Saravanan and M.K. Surappa, Fabrication and Characterization of Pure Magnesium-30 vol.% SiCp Particle Composite, Mater. Sci. Eng. A, 2000, 276, p 108–116CrossRef
5.
Zurück zum Zitat K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, Processing, Microstructure and Mechanical Processing of Magnesium Matrix Nanocomposites Fabricated by Semisolid Stirring Assisted Ultrasonic Vibration, J. Alloys Compd., 2011, 509, p 8664–8669CrossRef K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, Processing, Microstructure and Mechanical Processing of Magnesium Matrix Nanocomposites Fabricated by Semisolid Stirring Assisted Ultrasonic Vibration, J. Alloys Compd., 2011, 509, p 8664–8669CrossRef
6.
Zurück zum Zitat M. Gupta and W.L.E. Wong, Magnesium-Based Nanocomposites: Lightweight Materials of the Future, Mater. Charact., 2015, 105, p 30–46CrossRef M. Gupta and W.L.E. Wong, Magnesium-Based Nanocomposites: Lightweight Materials of the Future, Mater. Charact., 2015, 105, p 30–46CrossRef
7.
Zurück zum Zitat L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmich, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543CrossRef L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmich, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543CrossRef
8.
Zurück zum Zitat Q. Li, A. Vierecki, C.A. Rottmair, and R.F. Singer, Improved Processing of Carbon Nanotube/Magnesium Alloy Composites, Compos. Sci. Technol., 2009, 69, p 1193–1199CrossRef Q. Li, A. Vierecki, C.A. Rottmair, and R.F. Singer, Improved Processing of Carbon Nanotube/Magnesium Alloy Composites, Compos. Sci. Technol., 2009, 69, p 1193–1199CrossRef
9.
Zurück zum Zitat S.C. Tjong, Recent Progress in the Development and Properties of Novel Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes and Graphene Nanosheets, Mater. Sci. Eng. R Rep., 2013, 74, p 281–350CrossRef S.C. Tjong, Recent Progress in the Development and Properties of Novel Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes and Graphene Nanosheets, Mater. Sci. Eng. R Rep., 2013, 74, p 281–350CrossRef
10.
Zurück zum Zitat M. Paramsothy, X.H. Tan, J. Chan, R. Kwok, and M. Gupta, Carbon Nanotube Addition to Concentrated Magnesium Alloy AZ81: Enhanced Ductility with Occasional Significant Increase in Strength, Mater. Des., 2013, 45, p 15–23CrossRef M. Paramsothy, X.H. Tan, J. Chan, R. Kwok, and M. Gupta, Carbon Nanotube Addition to Concentrated Magnesium Alloy AZ81: Enhanced Ductility with Occasional Significant Increase in Strength, Mater. Des., 2013, 45, p 15–23CrossRef
11.
Zurück zum Zitat C.D. Li, X.J. Wang, K. Wu, W.Q. Liu, S.L. Xiang, C. Ding, X.S. Hu, and M.Y. Zheng, Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites, J. Alloys Compd., 2014, 612, p 330–336CrossRef C.D. Li, X.J. Wang, K. Wu, W.Q. Liu, S.L. Xiang, C. Ding, X.S. Hu, and M.Y. Zheng, Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites, J. Alloys Compd., 2014, 612, p 330–336CrossRef
12.
Zurück zum Zitat V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Graphene Based Materials: Past, Present and Future, Prog. Mater. Sci., 2011, 56, p 1178–1271CrossRef V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Graphene Based Materials: Past, Present and Future, Prog. Mater. Sci., 2011, 56, p 1178–1271CrossRef
13.
Zurück zum Zitat J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites, Scripta Mater., 2012, 66, p 594–597CrossRef J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites, Scripta Mater., 2012, 66, p 594–597CrossRef
14.
Zurück zum Zitat K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi A, 2014, 211, p 184–190CrossRef K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi A, 2014, 211, p 184–190CrossRef
15.
Zurück zum Zitat L. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J. Xu, H. Choi, H. Xu, F.E. Pfefferkorn, and X. Li, Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites, Scripta Mater., 2012, 67, p 29–32CrossRef L. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J. Xu, H. Choi, H. Xu, F.E. Pfefferkorn, and X. Li, Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites, Scripta Mater., 2012, 67, p 29–32CrossRef
16.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang, M. Asif, J. She, J. Gou, J. Mao, and H. Hu, Development of Magnesium-Graphene Nanoplatelets Composite, J. Compos. Mater., 2015, 49, p 285–293CrossRef M. Rashad, F. Pan, A. Tang, M. Asif, J. She, J. Gou, J. Mao, and H. Hu, Development of Magnesium-Graphene Nanoplatelets Composite, J. Compos. Mater., 2015, 49, p 285–293CrossRef
17.
Zurück zum Zitat M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She, Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2015, 630, p 36–44CrossRef M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She, Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2015, 630, p 36–44CrossRef
18.
Zurück zum Zitat M. Rashad, F. Pan, and M. Asif, Exploring Mechanical Behavior of Mg-6Zn Alloy Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2016, 649, p 263–269CrossRef M. Rashad, F. Pan, and M. Asif, Exploring Mechanical Behavior of Mg-6Zn Alloy Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2016, 649, p 263–269CrossRef
19.
Zurück zum Zitat S.L. Xiang, M. Gupta, X.J. Wang, L.D. Wang, X.S. Hu, and K. Wu, Enhanced Overall Strength and Ductility of Magnesium Matrix Composites by Low Content of Graphene Nanoplatelets, Compos. Part A, 2017, 100, p 183–193CrossRef S.L. Xiang, M. Gupta, X.J. Wang, L.D. Wang, X.S. Hu, and K. Wu, Enhanced Overall Strength and Ductility of Magnesium Matrix Composites by Low Content of Graphene Nanoplatelets, Compos. Part A, 2017, 100, p 183–193CrossRef
20.
Zurück zum Zitat M. Rashad, F. Pan, Y. Liu, X. Chen, H. Lin, R. Pan, M. Asif, and J. She, High Temperature Formability of Graphene Nanoplatelets-AZ31 Composites Fabricated by Stir-Casting Method, J. Magnes. Alloys, 2016, 4, p 270–277CrossRef M. Rashad, F. Pan, Y. Liu, X. Chen, H. Lin, R. Pan, M. Asif, and J. She, High Temperature Formability of Graphene Nanoplatelets-AZ31 Composites Fabricated by Stir-Casting Method, J. Magnes. Alloys, 2016, 4, p 270–277CrossRef
21.
Zurück zum Zitat A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, and B.C. Pai, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 1395–1403CrossRef A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, and B.C. Pai, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 1395–1403CrossRef
22.
Zurück zum Zitat A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. John, Development of the As-Cast Microstructure in Magnesium-Aluminium Alloy, J. Light Met., 2001, 1, p 61–72CrossRef A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. John, Development of the As-Cast Microstructure in Magnesium-Aluminium Alloy, J. Light Met., 2001, 1, p 61–72CrossRef
23.
Zurück zum Zitat S. Candan, M. Unal, E. Koc, Y. Turen, and E. Candan, Effects of Titanium Addition on Mechanical and Corrosion Behaviours of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509, p 1958–1963CrossRef S. Candan, M. Unal, E. Koc, Y. Turen, and E. Candan, Effects of Titanium Addition on Mechanical and Corrosion Behaviours of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509, p 1958–1963CrossRef
24.
Zurück zum Zitat J.Q. Xu, L.Y. Chen, H. Choi, and X.C. Li, Theoretical Study and Pathways for Nanoparticle Capture During Solidification of Metal Melt, J. Phys. Condens. Matter, 2012, 24, p 255304–255314CrossRef J.Q. Xu, L.Y. Chen, H. Choi, and X.C. Li, Theoretical Study and Pathways for Nanoparticle Capture During Solidification of Metal Melt, J. Phys. Condens. Matter, 2012, 24, p 255304–255314CrossRef
25.
Zurück zum Zitat C.D. Li, X.J. Wang, W.Q. Liu, H.L. Shi, C. Ding, X.S. Hu, M.Y. Zheng, and K. Wu, Effect of Solidification on Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced Magnesium Matrix Composite, Mater. Des., 2014, 58, p 204–208CrossRef C.D. Li, X.J. Wang, W.Q. Liu, H.L. Shi, C. Ding, X.S. Hu, M.Y. Zheng, and K. Wu, Effect of Solidification on Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced Magnesium Matrix Composite, Mater. Des., 2014, 58, p 204–208CrossRef
26.
Zurück zum Zitat Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scripta Mater., 2006, 54, p 1321–1326CrossRef Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scripta Mater., 2006, 54, p 1321–1326CrossRef
27.
Zurück zum Zitat L.C. Davis and J.E. Allison, Residual Stresses and Their Effects on Deformation in Particle-Reinforced Metal Matrix Composites, Metall. Trans., 1993, 24, p 2487–2496CrossRef L.C. Davis and J.E. Allison, Residual Stresses and Their Effects on Deformation in Particle-Reinforced Metal Matrix Composites, Metall. Trans., 1993, 24, p 2487–2496CrossRef
28.
Zurück zum Zitat S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, and M.Y. Zheng, Graphene Nanoplatelets Induced Heterogeneous Bimodal Structural Magnesium Matrix Composites with Enhanced Mechanical Properties, Sci. Rep., 2016, 6, p 38824CrossRef S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, and M.Y. Zheng, Graphene Nanoplatelets Induced Heterogeneous Bimodal Structural Magnesium Matrix Composites with Enhanced Mechanical Properties, Sci. Rep., 2016, 6, p 38824CrossRef
29.
Zurück zum Zitat R.E. Taylor, Thermal Expansion of Solids in CINDAS Data Series on Materials Properties, ASM International, Materials Park, 1998, p 1–4 R.E. Taylor, Thermal Expansion of Solids in CINDAS Data Series on Materials Properties, ASM International, Materials Park, 1998, p 1–4
30.
Zurück zum Zitat D. Yoon, Y.W. Son, and H. Cheong, Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy, Nano Lett., 2011, 11, p 3227–3231CrossRef D. Yoon, Y.W. Son, and H. Cheong, Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy, Nano Lett., 2011, 11, p 3227–3231CrossRef
31.
Zurück zum Zitat Y. Turen, Effect of Sn Addition on Microstructure, Mechanical and Casting Properties of AZ91 Alloy, Mater. Des., 2013, 49, p 1009–1015CrossRef Y. Turen, Effect of Sn Addition on Microstructure, Mechanical and Casting Properties of AZ91 Alloy, Mater. Des., 2013, 49, p 1009–1015CrossRef
Metadaten
Titel
Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing
verfasst von
Sinan Kandemir
Publikationsdatum
27.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3391-x

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Engineering and Performance 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.