Skip to main content

12.09.2024 | Original Paper

Development of improved functional neural network based autoregression models for power quality improvement

verfasst von: Alka Singh, Srishti Singh

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents two improved and adaptive models based on functional neural network and Autoregression (FNNAR) analysis. These models have been developed for estimating the fundamental component of nonlinear and varying load current and computing the exact compensation required in a power distribution system. The proposed FNNAR analysis involves two steps: The first step is designed to estimate the fundamental current in terms of polynomial or trigonometric functional expansion terms; while, the second step involves computations based on the weighted sum of the delayed output terms. An activation function is additionally incorporated to account for the nonlinearity and sudden variations of load current. Both the FNNAR models are developed and their parameters computed in an adaptive manner from the input–output data. The simulation results on a single-phase 110 V, 50 Hz system power distribution system are validated by a scaled down experimental model showing hardware results depicting load compensation. Adequate comparison of the two developed models is also discussed in the paper with two advanced variants of conventional algorithms viz. Least means square algorithm and second order generalized integrator based filtering technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Singh B, Chandra A, Al-Haddad K (2015) Power Quality Problems and Mitigation Techniques. Wiley Singh B, Chandra A, Al-Haddad K (2015) Power Quality Problems and Mitigation Techniques. Wiley
6.
Zurück zum Zitat Xiaoa H, Huangb D, Panc Y, Liub Y, Song K (2017) Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemom Intell Lab Syst 161:96–107CrossRef Xiaoa H, Huangb D, Panc Y, Liub Y, Song K (2017) Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemom Intell Lab Syst 161:96–107CrossRef
7.
Zurück zum Zitat Chon Ki H, Cohen RJ (1997) Linear and nonlinear ARMA model parameter estimation using an artificial neural network. IEEE Trans Biomed Eng 44(3):168–174CrossRef Chon Ki H, Cohen RJ (1997) Linear and nonlinear ARMA model parameter estimation using an artificial neural network. IEEE Trans Biomed Eng 44(3):168–174CrossRef
8.
Zurück zum Zitat Pappas SP, Ekonomou L, Karampelas P, Karamousantas DC, Katsikas SK, Chatzarakis GE, Skafidas PD (2010) Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electric Power Syst Res 80:256–264CrossRef Pappas SP, Ekonomou L, Karampelas P, Karamousantas DC, Katsikas SK, Chatzarakis GE, Skafidas PD (2010) Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electric Power Syst Res 80:256–264CrossRef
9.
Zurück zum Zitat Hosovský A, Pitel J, Adamek M, Mizakov J, Zidek K (2021) "Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models. J Build Eng 34:101955CrossRef Hosovský A, Pitel J, Adamek M, Mizakov J, Zidek K (2021) "Comparative study of week-ahead forecasting of daily gas consumption in buildings using regression ARMA/SARMA and genetic-algorithm-optimized regression wavelet neural network models. J Build Eng 34:101955CrossRef
10.
Zurück zum Zitat Dash SK, Dash PK (2019) Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network. J Mod Power Syst Clean Energy 7(5):1241–1255CrossRef Dash SK, Dash PK (2019) Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network. J Mod Power Syst Clean Energy 7(5):1241–1255CrossRef
11.
Zurück zum Zitat Cui M, Liu H, Li Z, Tang Y, Guan X (2014) Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142:419–428CrossRef Cui M, Liu H, Li Z, Tang Y, Guan X (2014) Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142:419–428CrossRef
12.
Zurück zum Zitat Wang Y, Wang D, Tang YI (2020) Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods. IEEE Access 8:17071–17079CrossRef Wang Y, Wang D, Tang YI (2020) Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods. IEEE Access 8:17071–17079CrossRef
13.
Zurück zum Zitat Jalil M, Samet H, Ghanbar T (2023) Dynamic polynomial models with ARMA coefficients used for modeling the DC series ARC fault in photovoltaic systems. IEEE Trans Industr Inf 19(5):6364–6375CrossRef Jalil M, Samet H, Ghanbar T (2023) Dynamic polynomial models with ARMA coefficients used for modeling the DC series ARC fault in photovoltaic systems. IEEE Trans Industr Inf 19(5):6364–6375CrossRef
14.
Zurück zum Zitat Pham HT, Yang BS (2010) Estimation and forecasting of machine health condition using ARMA/GARCH model. Mech Syst Signal Process 24:546–558CrossRef Pham HT, Yang BS (2010) Estimation and forecasting of machine health condition using ARMA/GARCH model. Mech Syst Signal Process 24:546–558CrossRef
15.
Zurück zum Zitat Chhajer P, Shah M, Kshirsagar A (2022) The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis Anal J 2(100015):1–12 Chhajer P, Shah M, Kshirsagar A (2022) The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis Anal J 2(100015):1–12
16.
Zurück zum Zitat Abassi AR, Baleanu D (2023) “Recent developments of energy management strategies in microgrids: An updated and comprehensive review and classification. Energy Convers Manag 297:117723CrossRef Abassi AR, Baleanu D (2023) “Recent developments of energy management strategies in microgrids: An updated and comprehensive review and classification. Energy Convers Manag 297:117723CrossRef
17.
Zurück zum Zitat Abassi AR, Maohammadi M (2023) “Probabilistic load flow in distribution networks: An updated and comprehensive review with a new classification proposal. EPSR 222:109497 Abassi AR, Maohammadi M (2023) “Probabilistic load flow in distribution networks: An updated and comprehensive review with a new classification proposal. EPSR 222:109497
21.
Zurück zum Zitat Saxena H, Singh A, Rai JN (2020) Adaptive Spline-based PLL for synchronisation and power quality improvement in distribution system. IET 14(7):1311–1319 Saxena H, Singh A, Rai JN (2020) Adaptive Spline-based PLL for synchronisation and power quality improvement in distribution system. IET 14(7):1311–1319
24.
Zurück zum Zitat Qasim M, Kanjiya P, Khadkikar V (2014) Artificial-neural-network-based phase-locking scheme for active power filters. IEEE Trans Ind Electron 61(8):3857–3866CrossRef Qasim M, Kanjiya P, Khadkikar V (2014) Artificial-neural-network-based phase-locking scheme for active power filters. IEEE Trans Ind Electron 61(8):3857–3866CrossRef
25.
Zurück zum Zitat Nguyen N. K, Abdeslam D. O, Wira P, Flieller D, Merckle J (2008) Artificial neural networks for harmonic currents identification in active power filtering schemes, In: 2008 34th annual conference of IEEE industrial electronics, Orlando, FL, USA, 2008, pp. 2696-2701, https://doi.org/10.1109/IECON.2008.4758384 Nguyen N. K, Abdeslam D. O, Wira P, Flieller D, Merckle J (2008) Artificial neural networks for harmonic currents identification in active power filtering schemes, In: 2008 34th annual conference of IEEE industrial electronics, Orlando, FL, USA, 2008, pp. 2696-2701, https://​doi.​org/​10.​1109/​IECON.​2008.​4758384
Metadaten
Titel
Development of improved functional neural network based autoregression models for power quality improvement
verfasst von
Alka Singh
Srishti Singh
Publikationsdatum
12.09.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02719-8