Skip to main content

2016 | OriginalPaper | Buchkapitel

26. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

verfasst von : Armen Derkevorkian, Lee Peterson, Ali R. Kolaini, Terry J. Hendricks, Bill J. Nesmith

Erschienen in: Special Topics in Structural Dynamics, Volume 6

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An analytic approach is demonstrated to reveal potential pyroshock-driven dynamic effects causing temporary power losses in the Thermo-Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high-fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large-amplitude suddenly-applied pyroshock loads in the MMRTG. A high fidelity model of the TE module bar was created with ∼30 million degrees-of-freedom (DOF). First, a quasi-static preload was applied on top of the TE module bar, then transient tri-axial displacement inputs were simultaneously applied on the preloaded module. The applied displacement inputs were derived from measured acceleration signals during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super-computing framework at NASA-AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high-fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lih, S.-S., Mal, A.K.: Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part II. J. Appl. Mech. 59(4), 887–892 (1992)CrossRef Lih, S.-S., Mal, A.K.: Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part II. J. Appl. Mech. 59(4), 887–892 (1992)CrossRef
2.
Zurück zum Zitat Mal, A.K., Lih, S.-S.: Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part I. J. Appl. Mech. 59(4), 878–886 (1992)CrossRef Mal, A.K., Lih, S.-S.: Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part I. J. Appl. Mech. 59(4), 878–886 (1992)CrossRef
3.
Zurück zum Zitat Kotzias, B.: Shock simulation for truss coupled shell structures. In: 55-th International Astronautical Congress, 2004, Vancouver, Canada Kotzias, B.: Shock simulation for truss coupled shell structures. In: 55-th International Astronautical Congress, 2004, Vancouver, Canada
4.
Zurück zum Zitat Kotzias, B.: Projection method in structural dynamics in application to shock propagation simulation for truss coupled shell structures. In: Proc. European Conference on Spacecraft Structures, Materials and Mechanical Testing 2005, Noordwijk, The Netherlands. vol 581, p. 121, 2005 Kotzias, B.: Projection method in structural dynamics in application to shock propagation simulation for truss coupled shell structures. In: Proc. European Conference on Spacecraft Structures, Materials and Mechanical Testing 2005, Noordwijk, The Netherlands. vol 581, p. 121, 2005
5.
Zurück zum Zitat Kotzias, B., Albus, J.: Pyrotechnique shocks in launch vehicles. In: Proc. 5th European Conference for Aerospace Sciences (EUCASS), Munich, Germany, 2013 Kotzias, B., Albus, J.: Pyrotechnique shocks in launch vehicles. In: Proc. 5th European Conference for Aerospace Sciences (EUCASS), Munich, Germany, 2013
6.
Zurück zum Zitat Botta, F., Cerri, G.: Shock response spectrum in plates under impulse loads. J. Sound Vib. 308(3), 563–578 (2007)CrossRef Botta, F., Cerri, G.: Shock response spectrum in plates under impulse loads. J. Sound Vib. 308(3), 563–578 (2007)CrossRef
7.
Zurück zum Zitat Duran, A., Hwang, H.-J.: Stochastic shock response spectrum decomposition method. In: Proceedings of the Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, May 2015 Duran, A., Hwang, H.-J.: Stochastic shock response spectrum decomposition method. In: Proceedings of the Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, May 2015
8.
Zurück zum Zitat Hamelblau, H., Kern, D.L., Manning, J.E., Pierson, A.G., Rubin, S.: Dynamics environmental criteria. In: NASA Technical Handbook, NASA-HDBK-7005, 4 December 2000 Hamelblau, H., Kern, D.L., Manning, J.E., Pierson, A.G., Rubin, S.: Dynamics environmental criteria. In: NASA Technical Handbook, NASA-HDBK-7005, 4 December 2000
9.
Zurück zum Zitat Ramajeyathilagam, K., Vendhan, C.P., Bhujanga Rao, V.: Non-linear transient dynamic response of rectangular plates under shock loading. Int. J. Impact Eng. 24(10), 999–1015 (2000)CrossRef Ramajeyathilagam, K., Vendhan, C.P., Bhujanga Rao, V.: Non-linear transient dynamic response of rectangular plates under shock loading. Int. J. Impact Eng. 24(10), 999–1015 (2000)CrossRef
10.
Zurück zum Zitat Qiu, X., Deshpande, V.S., Fleck, N.A.: Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. Eur. J. Mech. A. Solids 22(6), 801–814 (2003)CrossRefMATH Qiu, X., Deshpande, V.S., Fleck, N.A.: Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. Eur. J. Mech. A. Solids 22(6), 801–814 (2003)CrossRefMATH
11.
Zurück zum Zitat Lee, A.S., Kim, B.O., Kim, Y.-C.: A finite element transient response analysis method of a rotor-bearing system to base shock excitations using the state-space newmark scheme and comparisons with experiments. J. Sound Vib. 297(3), 595–615 (2006) Lee, A.S., Kim, B.O., Kim, Y.-C.: A finite element transient response analysis method of a rotor-bearing system to base shock excitations using the state-space newmark scheme and comparisons with experiments. J. Sound Vib. 297(3), 595–615 (2006)
12.
Zurück zum Zitat Kalman, T., Farzaneh, M., McClure, G.: Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires. Comput. Struct. 85(7), 375–384 (2007)CrossRef Kalman, T., Farzaneh, M., McClure, G.: Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires. Comput. Struct. 85(7), 375–384 (2007)CrossRef
13.
Zurück zum Zitat Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318(4), 884–902 (2008)CrossRef Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318(4), 884–902 (2008)CrossRef
14.
Zurück zum Zitat Liu, T., et al.: The impact of sand slugs against beams and plates: coupled discrete particle/finite element simulations. J. Mech. Phys. Solids 61(8), 1798–1821 (2013)CrossRef Liu, T., et al.: The impact of sand slugs against beams and plates: coupled discrete particle/finite element simulations. J. Mech. Phys. Solids 61(8), 1798–1821 (2013)CrossRef
15.
Zurück zum Zitat Pagani, A., et al.: Dynamic response of aerospace structures by means of refined beam theories. Aerosp. Sci. Technol. 46, 360–373 (2015)CrossRef Pagani, A., et al.: Dynamic response of aerospace structures by means of refined beam theories. Aerosp. Sci. Technol. 46, 360–373 (2015)CrossRef
16.
Zurück zum Zitat Derkevorkian, A., Kolaini, A.R., Peterson, L.: Advanced computational modeling approaches for shock response prediction. In: Proceedings of the 29th Aerospace Testing Seminar, Los Angeles, CA, 2015 Derkevorkian, A., Kolaini, A.R., Peterson, L.: Advanced computational modeling approaches for shock response prediction. In: Proceedings of the 29th Aerospace Testing Seminar, Los Angeles, CA, 2015
17.
Zurück zum Zitat Crane, N.K.: Sierra/SM Theory Manual. No. SAND2013-4615. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2013 Crane, N.K.: Sierra/SM Theory Manual. No. SAND2013-4615. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2013
18.
Zurück zum Zitat Thomas, J.D.: Sierra/Solid Mechanics 4.22 User’s Guide. No. SAND2011-7597. Sandia National Laboratories, 2011 Thomas, J.D.: Sierra/Solid Mechanics 4.22 User’s Guide. No. SAND2011-7597. Sandia National Laboratories, 2011
19.
Zurück zum Zitat Blacker, T.D., Bohnhoff, W.J., Edwards, T.L.: CUBIT Mesh Generation Envi0072onment, vol. 1: Users Manual. No. SAND-94-1100. Sandia National Labs, Albuquerque, NM (1994) Blacker, T.D., Bohnhoff, W.J., Edwards, T.L.: CUBIT Mesh Generation Envi0072onment, vol. 1: Users Manual. No. SAND-94-1100. Sandia National Labs, Albuquerque, NM (1994)
Metadaten
Titel
Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation
verfasst von
Armen Derkevorkian
Lee Peterson
Ali R. Kolaini
Terry J. Hendricks
Bill J. Nesmith
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29910-5_26

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.