Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2018

05.01.2018

Development of oxyfluoroborate glass ceramics doped with Er3+ and Yb3+

verfasst von: M. Rodríguez Chialanza, R. Keuchkerian, L. J. Q. Maia, J. F. Carvalho, L. Suescun, R. Faccio, L. Fornaro

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The preparation of oxyfluoroborate glasses and glass–ceramics doped with Yb3+ and Er3+ with improved luminescent properties is reported. Glasses with compositions (100 − x − y) (MO·2B2O3) + xPbF2 + y(YbF3:ErF3) (% in mol), where M is Sr, Ba, Ca, x = 10–40% and y = 0, 1 or 5% were prepared by the melt/quenching technique. Glass crystallization was studied using thermal analysis and X-ray diffraction techniques. Optical absorption and infrared up-conversion were studied on both glasses and glass–ceramics. The incorporation of a fluoride compound into the borate glass resulted to depend on the ionic radius of the glass modifier: as it increases, glasses become more stable against crystallization. On the other hand, alkali–fluoride compounds such as BaF2 and SrF2 can be crystallized from these systems by selecting an appropriate proportion between their components. Furthermore, the up-conversion response can be tuned by changing the glass modifiers (Sr, Ba and Ca) of the borate matrix, which also influence the type of fluoride crystallized compound. The strontium glass–ceramics have the highest luminescence response due to the crystallization of SrF2 compound in the system SrO–B2O3–PbF2. Meanwhile, the lowest luminescence signal was obtained for samples in the system BaO–B2O3–PbF2 where the Pb1.33Ba2.66B11FO20 phase crystallizes. With this strategy, new materials with improved luminescence properties that can be used as up converters, were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)CrossRef X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)CrossRef
2.
Zurück zum Zitat W. Wang, H. Gao, Y. Mao, Highly matched spectrum needed for photosynthesis in Ce3+/Er3+/Yb3+ tri-doped oxyfluoride glass ceramics. J. Alloys Compd. 648, 75–78 (2015)CrossRef W. Wang, H. Gao, Y. Mao, Highly matched spectrum needed for photosynthesis in Ce3+/Er3+/Yb3+ tri-doped oxyfluoride glass ceramics. J. Alloys Compd. 648, 75–78 (2015)CrossRef
3.
Zurück zum Zitat L. Wondraczek et al., Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat. Commun. 4, 2047 (2013)CrossRef L. Wondraczek et al., Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat. Commun. 4, 2047 (2013)CrossRef
4.
Zurück zum Zitat M.C. Gonçalves, L.F. Santos, R.M. Almeida, Rare-earth-doped transparent glass ceramics. C. R. Chim. 5, 845–854 (2002)CrossRef M.C. Gonçalves, L.F. Santos, R.M. Almeida, Rare-earth-doped transparent glass ceramics. C. R. Chim. 5, 845–854 (2002)CrossRef
5.
Zurück zum Zitat C. Rüssel, Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses. Chem. Mater. 17(23), 5843–5847 (2005)CrossRef C. Rüssel, Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses. Chem. Mater. 17(23), 5843–5847 (2005)CrossRef
6.
Zurück zum Zitat P.P. Fedorov, A.A. Luginina, A.I. Popov, Transparent oxyfluoride glass ceramics. J. Fluor. Chem. 172, 22–50 (2015)CrossRef P.P. Fedorov, A.A. Luginina, A.I. Popov, Transparent oxyfluoride glass ceramics. J. Fluor. Chem. 172, 22–50 (2015)CrossRef
7.
Zurück zum Zitat A. de Pablos-Martín, A. Durán, M.J. Pascual, Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties. Int. Mater. Rev. 57(3), 165–186 (2012)CrossRef A. de Pablos-Martín, A. Durán, M.J. Pascual, Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties. Int. Mater. Rev. 57(3), 165–186 (2012)CrossRef
8.
Zurück zum Zitat V.K. Tikhomirov et al., Optimizing Er/Yb ratio and content in ErYb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence. Sol. Energy Mater. Sol. Cells 100, 209–215 (2012)CrossRef V.K. Tikhomirov et al., Optimizing Er/Yb ratio and content in ErYb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence. Sol. Energy Mater. Sol. Cells 100, 209–215 (2012)CrossRef
9.
Zurück zum Zitat J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)CrossRef J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)CrossRef
10.
Zurück zum Zitat Y. Wang, J. Ohwaki, New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 63(24), 3268–3270 (1993)CrossRef Y. Wang, J. Ohwaki, New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 63(24), 3268–3270 (1993)CrossRef
11.
Zurück zum Zitat G. Dantelle et al., Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics. J. Mater. Res. 20(2), 472–481 (2005)CrossRef G. Dantelle et al., Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics. J. Mater. Res. 20(2), 472–481 (2005)CrossRef
12.
Zurück zum Zitat F. Zeng, G. Ren, X. Qiu, Q. Yang, Effect of different Er3+ compounds doping on microstructure and photoluminescent properties of oxyfluoride glass ceramics. Physica B 403 (13–16), 2417–2422 (2008). F. Zeng, G. Ren, X. Qiu, Q. Yang, Effect of different Er3+ compounds doping on microstructure and photoluminescent properties of oxyfluoride glass ceramics. Physica B 403 (13–16), 2417–2422 (2008).
13.
Zurück zum Zitat Y. Ledemi, M. El Amraoui, J.L. Ferrari, P.-L. Fortin, S.J.L. Ribeiro, Y. Messaddeq, Infrared to visible up-conversion emission in Er3+/Yb3+ codoped fluoro-phosphate glass-ceramics. J. Am. Ceram. Soc. 96(3), 825–832 (2013)CrossRef Y. Ledemi, M. El Amraoui, J.L. Ferrari, P.-L. Fortin, S.J.L. Ribeiro, Y. Messaddeq, Infrared to visible up-conversion emission in Er3+/Yb3+ codoped fluoro-phosphate glass-ceramics. J. Am. Ceram. Soc. 96(3), 825–832 (2013)CrossRef
14.
Zurück zum Zitat W.C. Wang, J. Yuan, X.Y. Liu, D.D. Chen, Q.Y. Zhang, Spectroscopic properties and energy transfer parameters of Yb3+/Tm3+ co-doped fluorogermanate glasses. J. Non Cryst. Solids 431, 154–158 (2016)CrossRef W.C. Wang, J. Yuan, X.Y. Liu, D.D. Chen, Q.Y. Zhang, Spectroscopic properties and energy transfer parameters of Yb3+/Tm3+ co-doped fluorogermanate glasses. J. Non Cryst. Solids 431, 154–158 (2016)CrossRef
15.
Zurück zum Zitat F. Steudel, S. Loos, B. Ahrens, S. Schweizer, Quantum efficiency and energy transfer processes in rare-earth doped borate glass for solid-state lighting. J. Lumin. 170, 770–777 (2016)CrossRef F. Steudel, S. Loos, B. Ahrens, S. Schweizer, Quantum efficiency and energy transfer processes in rare-earth doped borate glass for solid-state lighting. J. Lumin. 170, 770–777 (2016)CrossRef
16.
Zurück zum Zitat M. Rodriguez Chialanza et al., Correlation between structure, crystallization and thermally stimulated luminescence response of some borate glass and glass-ceramics. J. Non Cryst. Solids 427, 191–198 (2015)CrossRef M. Rodriguez Chialanza et al., Correlation between structure, crystallization and thermally stimulated luminescence response of some borate glass and glass-ceramics. J. Non Cryst. Solids 427, 191–198 (2015)CrossRef
17.
Zurück zum Zitat K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, T. Komatsu, Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses. Opt. Mater. 50, 238–243 (2015)CrossRef K. Shinozaki, W. Pisarski, M. Affatigato, T. Honma, T. Komatsu, Glass structure and NIR emission of Er3+ at 1.5 µm in oxyfluoride BaF2–Al2O3–B2O3 glasses. Opt. Mater. 50, 238–243 (2015)CrossRef
18.
Zurück zum Zitat A.A. Cabral, A.A.D. Cardoso, E.D. Zanotto, Glass-forming ability versus stability of silicate glasses. I. Experimental test. J. Non. Cryst. Solids 320(1–3), 1–8 (2003). A.A. Cabral, A.A.D. Cardoso, E.D. Zanotto, Glass-forming ability versus stability of silicate glasses. I. Experimental test. J. Non. Cryst. Solids 320(1–3), 1–8 (2003).
19.
Zurück zum Zitat A.C. Larson, R.B. Von, Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory, New Mexico, 1994) A.C. Larson, R.B. Von, Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory, New Mexico, 1994)
20.
Zurück zum Zitat B.H. Toby, A graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001)CrossRef B.H. Toby, A graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001)CrossRef
21.
Zurück zum Zitat H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)CrossRef H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)CrossRef
22.
Zurück zum Zitat C.A. Gressler, J.E. Shelby, Properties and structure of PbO-PbF2-B2O3 glasses. J. Appl. Phys. 66(3), 1127–1131 (1989)CrossRef C.A. Gressler, J.E. Shelby, Properties and structure of PbO-PbF2-B2O3 glasses. J. Appl. Phys. 66(3), 1127–1131 (1989)CrossRef
23.
Zurück zum Zitat Y.D. Yiannopoulos, G.D. Chryssikos, E.I. Kamitsos, Structure and properties of alkaline earth borate glasses. Phys. Chem. Glass 42(3), 164–172 (2001) Y.D. Yiannopoulos, G.D. Chryssikos, E.I. Kamitsos, Structure and properties of alkaline earth borate glasses. Phys. Chem. Glass 42(3), 164–172 (2001)
24.
Zurück zum Zitat C.G. Bergeron, Crystal growth kinetics in binary borate melts, in Materials Science Research, vol. 12, ed. by V.D. Fréchette, L.D. Pye, N.J. Kreidl (Plenum Press, New york, 1978), pp. 445–462 C.G. Bergeron, Crystal growth kinetics in binary borate melts, in Materials Science Research, vol. 12, ed. by V.D. Fréchette, L.D. Pye, N.J. Kreidl (Plenum Press, New york, 1978), pp. 445–462
25.
Zurück zum Zitat L. Shartsis, H.F. Shermer, Surface tension, density, viscosity, and electrical resistivity of molten binary alkaline-earth borates. J. Am. Ceram. Soc. 37(11), 544–551 (1954)CrossRef L. Shartsis, H.F. Shermer, Surface tension, density, viscosity, and electrical resistivity of molten binary alkaline-earth borates. J. Am. Ceram. Soc. 37(11), 544–551 (1954)CrossRef
26.
Zurück zum Zitat R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25(5), 925–946 (1969)CrossRef R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25(5), 925–946 (1969)CrossRef
27.
Zurück zum Zitat J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1934) J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1934)
28.
Zurück zum Zitat A. Marotta, A. Buri, F. Branda, S. Saiello, Nulceation and crystallization of Li2O-2SiO2 glass—a DTA study, in Advances in Ceramics. Nucleation and Crystallization in Glasses, ed. by G.H. Beall, J.H. Simmons, D.R. Uhlman (American Ceramic Society, Westerville, 1982), pp. 146–152 A. Marotta, A. Buri, F. Branda, S. Saiello, Nulceation and crystallization of Li2O-2SiO2 glass—a DTA study, in Advances in Ceramics. Nucleation and Crystallization in Glasses, ed. by G.H. Beall, J.H. Simmons, D.R. Uhlman (American Ceramic Society, Westerville, 1982), pp. 146–152
29.
Zurück zum Zitat V.M. Fokin, A.A. Cabral, R.M.C.V. Reis, M.L.F. Nascimento, E.D. Zanotto, Critical assessment of DTA–DSC methods for the study of nucleation kinetics in glasses. J. Non Cryst. Solids 356, 358–367 (2010)CrossRef V.M. Fokin, A.A. Cabral, R.M.C.V. Reis, M.L.F. Nascimento, E.D. Zanotto, Critical assessment of DTA–DSC methods for the study of nucleation kinetics in glasses. J. Non Cryst. Solids 356, 358–367 (2010)CrossRef
30.
Zurück zum Zitat K. Matusita, S. Sakka, Y. Matsui, Determination of the activation energy for crystal growth by differential thermal analysis. J. Mater. Sci. 10(6), 961–966 (1975)CrossRef K. Matusita, S. Sakka, Y. Matsui, Determination of the activation energy for crystal growth by differential thermal analysis. J. Mater. Sci. 10(6), 961–966 (1975)CrossRef
31.
Zurück zum Zitat M. Środa, I. Wacławska, L. Stoch, M. Reben, DTA/DSC study of nanocrystallization in oxyfluoride glasses. J. Therm. Anal. Calorim. 77(1), 193–200 (2004)CrossRef M. Środa, I. Wacławska, L. Stoch, M. Reben, DTA/DSC study of nanocrystallization in oxyfluoride glasses. J. Therm. Anal. Calorim. 77(1), 193–200 (2004)CrossRef
32.
Zurück zum Zitat M. Mortier, G. Patriarche, Structural characterisation of transparent oxyfluoride glass-ceramics. J. Mater. Sci. 35(19), 4849–4856 (2000) M. Mortier, G. Patriarche, Structural characterisation of transparent oxyfluoride glass-ceramics. J. Mater. Sci. 35(19), 4849–4856 (2000)
33.
Zurück zum Zitat H. Wu et al., Designing a deep ultraviolet nonlinear optical material with large second harmonic generation response. J. Am. Chem. Soc. 135(11), 4215–4218 (2013)CrossRef H. Wu et al., Designing a deep ultraviolet nonlinear optical material with large second harmonic generation response. J. Am. Chem. Soc. 135(11), 4215–4218 (2013)CrossRef
34.
Zurück zum Zitat D.P. Kudrjavtcev, Y.S. Oseledchik, A.L. Prosvirnin, N.V. Svitanko, Growth of a new strontium borate crystal Sr4B14O25. J. Cryst. Growth 254(3–4), 456–460 (2003). D.P. Kudrjavtcev, Y.S. Oseledchik, A.L. Prosvirnin, N.V. Svitanko, Growth of a new strontium borate crystal Sr4B14O25. J. Cryst. Growth 254(3–4), 456–460 (2003).
35.
Zurück zum Zitat B. Lai, L. Feng, J. Wang, Q. Su, Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses. Opt. Mater. 32(9), 1154–1160 (2010)CrossRef B. Lai, L. Feng, J. Wang, Q. Su, Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses. Opt. Mater. 32(9), 1154–1160 (2010)CrossRef
36.
Zurück zum Zitat V.D. Rodríguez, V.K. Tikhomirov, J. Méndez-Ramos, A.C. Yanes, V.V. Moshchalkov, Towards broad range and highly efficient down-conversion of solar spectrum by Er3+Yb3+ co-doped nano-structured glass-ceramics. Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010)CrossRef V.D. Rodríguez, V.K. Tikhomirov, J. Méndez-Ramos, A.C. Yanes, V.V. Moshchalkov, Towards broad range and highly efficient down-conversion of solar spectrum by Er3+Yb3+ co-doped nano-structured glass-ceramics. Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010)CrossRef
37.
Zurück zum Zitat M. Azam, V.K. Rai, P. Mishra, Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses. J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016)CrossRef M. Azam, V.K. Rai, P. Mishra, Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses. J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016)CrossRef
38.
Zurück zum Zitat T.S. Goncalves et al., Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+. Mater. Chem. Phys. 157, 45–55 (2015)CrossRef T.S. Goncalves et al., Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+. Mater. Chem. Phys. 157, 45–55 (2015)CrossRef
39.
Zurück zum Zitat M.-Y. Yoo, J.-H. Lee, H.-M. Jeong, K.-S. Lim, P. Babu, Enhancement of photoluminescence and upconversion in Er–Yb codoped nanocrystalline glass–ceramics. Opt. Mater. 35(11), 1922–1926 (2013)CrossRef M.-Y. Yoo, J.-H. Lee, H.-M. Jeong, K.-S. Lim, P. Babu, Enhancement of photoluminescence and upconversion in Er–Yb codoped nanocrystalline glass–ceramics. Opt. Mater. 35(11), 1922–1926 (2013)CrossRef
40.
Zurück zum Zitat F. Steudel, S. Loos, B. Ahrens, S. Schweizer, Luminescent borate glass for efficiency enhancement of CdTe solar cells. J. Lumin. 164, 76–80 (2015)CrossRef F. Steudel, S. Loos, B. Ahrens, S. Schweizer, Luminescent borate glass for efficiency enhancement of CdTe solar cells. J. Lumin. 164, 76–80 (2015)CrossRef
Metadaten
Titel
Development of oxyfluoroborate glass ceramics doped with Er3+ and Yb3+
verfasst von
M. Rodríguez Chialanza
R. Keuchkerian
L. J. Q. Maia
J. F. Carvalho
L. Suescun
R. Faccio
L. Fornaro
Publikationsdatum
05.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8514-x

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science: Materials in Electronics 7/2018 Zur Ausgabe

Neuer Inhalt