Skip to main content

30.11.2024

Development of Sparse Time Frequency Distribution Reconstruction Using a Gradient Slime Mould Renyie Entropy Shrinkage Model

verfasst von: Shaik Mohammed Shareef, M. Venu Gopala Rao

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time–frequency distributions (TFD) can provide a great set of tools for studying transient signals. Although TFD can overcome constraints on signal representation, the most widely used TFDs produce artifacts known as cross terms, which could pose a challenge when used on real-world signals. The paper proposes a sparse Time–Frequency Distribution (TFD) reconstruction method employing a gradient slime Renyi entropy shrinkage model. Each time–frequency slice within the TFD undergoes shrinkage utilizing distinct algorithms based on Renyi entropy, which accounts for both short-term and narrowband characteristics. Renyi entropy quantifies data presence in the time–frequency plane. By integrating the Renyi entropy-based shrinkage operator, the traditional hard threshold operator in the shrinkage process is replaced, enhancing TFD resolution. The reconstruction model parameters are fine-tuned using a gradient slime shape optimizer, employing a concentration minimization function and Mean Squared Error (MSE) metrics between initial and reconstructed TFD modules for optimization. The simulation results prove that the proposed method achieved a reduced MSE value of 1.95 as compared with other existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat M.G. Amin, B. Jokanovic, Y.D. Zhang, F. Ahmad, A sparsity-perspective to quadratic time–frequency distributions. Digit. Sign. Proc. 46, 175–190 (2015)MathSciNetCrossRef M.G. Amin, B. Jokanovic, Y.D. Zhang, F. Ahmad, A sparsity-perspective to quadratic time–frequency distributions. Digit. Sign. Proc. 46, 175–190 (2015)MathSciNetCrossRef
2.
Zurück zum Zitat V. S. Amin, Y. D. Zhang, B. Himed, Improved instantaneous frequency estimation of multi-component FM signals. In 2019 IEEE Radar Conference (RadarConf) 1–6 (2019). IEEE. V. S. Amin, Y. D. Zhang, B. Himed, Improved instantaneous frequency estimation of multi-component FM signals. In 2019 IEEE Radar Conference (RadarConf) 1–6 (2019). IEEE.
3.
Zurück zum Zitat J. Dong, H. Li, Z. Fan, X. Zhao, Time-frequency sparse reconstruction of non-uniform sampling for non-stationary signal. IEEE Trans. Veh. Technol. 70(11), 11145–11153 (2021)CrossRef J. Dong, H. Li, Z. Fan, X. Zhao, Time-frequency sparse reconstruction of non-uniform sampling for non-stationary signal. IEEE Trans. Veh. Technol. 70(11), 11145–11153 (2021)CrossRef
4.
Zurück zum Zitat L. Jiang, H. Zhang, L. Yu, Robust time-frequency reconstruction by learning structured sparsity. arXiv preprint arXiv2004.14820 (2020). L. Jiang, H. Zhang, L. Yu, Robust time-frequency reconstruction by learning structured sparsity. arXiv preprint arXiv2004.14820 (2020).
5.
Zurück zum Zitat Y. Jiang, Q. Luo, Y. Wei, L. Abualigah, Y. Zhou, An efficient binary Gradient-based optimizer for feature selection. Math. Biosci. Eng. 18(4), 3813–3854 (2021)CrossRef Y. Jiang, Q. Luo, Y. Wei, L. Abualigah, Y. Zhou, An efficient binary Gradient-based optimizer for feature selection. Math. Biosci. Eng. 18(4), 3813–3854 (2021)CrossRef
6.
Zurück zum Zitat V. Jurdana, I. Volaric, V. Sucic, The local Rényi entropy based shrinkage algorithm for sparse TFD reconstruction. In 2020 international conference on broadband communications for next generation networks and multimedia applications (CoBCom) 1–8 (2020). IEEE. V. Jurdana, I. Volaric, V. Sucic, The local Rényi entropy based shrinkage algorithm for sparse TFD reconstruction. In 2020 international conference on broadband communications for next generation networks and multimedia applications (CoBCom) 1–8 (2020). IEEE.
7.
Zurück zum Zitat N.A. Khan, M. Mohammadi, Reconstruction of non-stationary signals with missing samples using time–frequency filtering. Circ. Syst. Sign. Proc. 37, 3175–3190 (2018)MathSciNetCrossRef N.A. Khan, M. Mohammadi, Reconstruction of non-stationary signals with missing samples using time–frequency filtering. Circ. Syst. Sign. Proc. 37, 3175–3190 (2018)MathSciNetCrossRef
8.
Zurück zum Zitat N.A. Khan, M. Mohammadi, I. Djurović, A modified viterbi algorithm-based if estimation algorithm for adaptive directional time–frequency distributions. Circ. Syst. Sign. Proc. 38, 2227–2244 (2019)CrossRef N.A. Khan, M. Mohammadi, I. Djurović, A modified viterbi algorithm-based if estimation algorithm for adaptive directional time–frequency distributions. Circ. Syst. Sign. Proc. 38, 2227–2244 (2019)CrossRef
9.
Zurück zum Zitat S.S. Moghadasian, S. Gazor, Sparsely localized time-frequency energy distributions for multi-component LFM signals. IEEE Sign. Proc. Lett. 27, 6–10 (2019)CrossRef S.S. Moghadasian, S. Gazor, Sparsely localized time-frequency energy distributions for multi-component LFM signals. IEEE Sign. Proc. Lett. 27, 6–10 (2019)CrossRef
10.
Zurück zum Zitat Y. T. H. Nguyen, D. McLernon, M. Ghogho, A. Zaidi, Time-frequency distribution for undersampled non-stationary signals using chirp-based Kernel. In 2018 5th NAFOSTED Conference on Information and Computer Science (NICS) 6–10 (2018). IEEE. Y. T. H. Nguyen, D. McLernon, M. Ghogho, A. Zaidi, Time-frequency distribution for undersampled non-stationary signals using chirp-based Kernel. In 2018 5th NAFOSTED Conference on Information and Computer Science (NICS) 6–10 (2018). IEEE.
11.
Zurück zum Zitat S. Ouelha, A. Aissa-El-Bey, B. Boashash, Improving DOA estimation algorithms using high-resolution quadratic time-frequency distributions. IEEE Trans. Sign. Proc. 65(19), 5179–5190 (2017)MathSciNetCrossRef S. Ouelha, A. Aissa-El-Bey, B. Boashash, Improving DOA estimation algorithms using high-resolution quadratic time-frequency distributions. IEEE Trans. Sign. Proc. 65(19), 5179–5190 (2017)MathSciNetCrossRef
12.
Zurück zum Zitat E. Sejdić, I. Orović, S. Stanković, Compressive sensing meets time–frequency an overview of recent advances in time–frequency processing of sparse signals. Digit. Sign. Proc. 77, 22–35 (2018)MathSciNetCrossRef E. Sejdić, I. Orović, S. Stanković, Compressive sensing meets time–frequency an overview of recent advances in time–frequency processing of sparse signals. Digit. Sign. Proc. 77, 22–35 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A tutorial on sparse signal reconstruction and its applications in signal processing. Circ. Syst. Sign. Proc. 38, 1206–1263 (2019)CrossRef L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A tutorial on sparse signal reconstruction and its applications in signal processing. Circ. Syst. Sign. Proc. 38, 1206–1263 (2019)CrossRef
14.
Zurück zum Zitat L. Stanković, M. Daković, T. Thayaparan, Non-stationary signal analysis time-frequency approach. In Academic Press Library in Signal Processing 3, 27–142 (2014). Elsevier. L. Stanković, M. Daković, T. Thayaparan, Non-stationary signal analysis time-frequency approach. In Academic Press Library in Signal Processing 3, 27–142 (2014). Elsevier.
15.
Zurück zum Zitat J. Su, H. Tao, M. Tao, J. Xie, Y. Wang, L. Wang, Time-varying SAR interference suppression based on delay-Doppler iterative decomposition algorithm. Remote Sens. 10(9), 1491 (2018)CrossRef J. Su, H. Tao, M. Tao, J. Xie, Y. Wang, L. Wang, Time-varying SAR interference suppression based on delay-Doppler iterative decomposition algorithm. Remote Sens. 10(9), 1491 (2018)CrossRef
16.
Zurück zum Zitat C. Tong, S. Wang, I. Selesnick, R. Yan, X. Chen, Ridge-aware weighted sparse time-frequency representation. IEEE Trans. Signal Process. 69(136–14), 9 (2020) C. Tong, S. Wang, I. Selesnick, R. Yan, X. Chen, Ridge-aware weighted sparse time-frequency representation. IEEE Trans. Signal Process. 69(136–14), 9 (2020)
17.
Zurück zum Zitat I. Volaric, V. Sucic, On the L0-norm based sparse time-frequency distribution reconstruction. In 2018 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom) 1–8 (2018). IEEE. I. Volaric, V. Sucic, On the L0-norm based sparse time-frequency distribution reconstruction. In 2018 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom) 1–8 (2018). IEEE.
18.
Zurück zum Zitat I. Volaric, V. Sucic, On the noise impact in the L1 based reconstruction of the sparse time-frequency distributions. In 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom) 1–6 (2016). IEEE. I. Volaric, V. Sucic, On the noise impact in the L1 based reconstruction of the sparse time-frequency distributions. In 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom) 1–6 (2016). IEEE.
19.
Zurück zum Zitat I. Volaric, V. Sucic, S. Stankovic, A data driven compressive sensing approach for time-frequency signal enhancement. Signal Process. 141, 229–239 (2017)CrossRef I. Volaric, V. Sucic, S. Stankovic, A data driven compressive sensing approach for time-frequency signal enhancement. Signal Process. 141, 229–239 (2017)CrossRef
20.
Zurück zum Zitat I. Volaric, V. Sucic, Sparse time–frequency distributions based on the ℓ _1 ℓ 1-norm minimization with the fast intersection of confidence intervals rule. SIViP 13, 499–506 (2019)CrossRef I. Volaric, V. Sucic, Sparse time–frequency distributions based on the ℓ _1 ℓ 1-norm minimization with the fast intersection of confidence intervals rule. SIViP 13, 499–506 (2019)CrossRef
21.
Zurück zum Zitat I. Volaric, V. Sucic, Z. Car, A compressive sensing based method for cross-terms suppression in the time-frequency plane. In 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE) 1–4 (2015). IEEE. I. Volaric, V. Sucic, Z. Car, A compressive sensing based method for cross-terms suppression in the time-frequency plane. In 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE) 1–4 (2015). IEEE.
22.
Zurück zum Zitat C. Yue, J. Liang, B. Qu, Y. Han, Y. Zhu, O.D. Crisalle, A novel multi-objective optimization algorithm for sparse signal reconstruction. Signal Process. 167, 107292 (2020)CrossRef C. Yue, J. Liang, B. Qu, Y. Han, Y. Zhu, O.D. Crisalle, A novel multi-objective optimization algorithm for sparse signal reconstruction. Signal Process. 167, 107292 (2020)CrossRef
23.
Zurück zum Zitat S. Zhang, A. Ahmed, Y. D. Zhang, Sparsity-based time-frequency analysis for automatic radar waveform recognition. In 2020 IEEE International Radar Conference (RADAR) 548–553 (2020). IEEE. S. Zhang, A. Ahmed, Y. D. Zhang, Sparsity-based time-frequency analysis for automatic radar waveform recognition. In 2020 IEEE International Radar Conference (RADAR) 548–553 (2020). IEEE.
24.
Zurück zum Zitat S. Zhang, Y.D. Zhang, Low-rank Hankel matrix completion for robust time-frequency analysis. IEEE Trans. Signal Process. 68, 6171–6186 (2020)MathSciNetCrossRef S. Zhang, Y.D. Zhang, Low-rank Hankel matrix completion for robust time-frequency analysis. IEEE Trans. Signal Process. 68, 6171–6186 (2020)MathSciNetCrossRef
Metadaten
Titel
Development of Sparse Time Frequency Distribution Reconstruction Using a Gradient Slime Mould Renyie Entropy Shrinkage Model
verfasst von
Shaik Mohammed Shareef
M. Venu Gopala Rao
Publikationsdatum
30.11.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02927-4