Skip to main content

2025 | OriginalPaper | Buchkapitel

Development of the Bees Algorithm Toolkit for Optimisation in LabVIEW

verfasst von : Murat Sahin, D. T. Pham

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a Bees Algorithm (BA) Optimisation Toolkit developed in LabVIEW. The BA is an effective optimisation algorithm that mimics the nectar-foraging behaviour of honey bees. LabVIEW is a powerful program for data acquisition and control applications that is very popular in industry. There are tools within the scope of optimisation within LabVIEW, but there is no toolkit for the BA. In this chapter, the preparation of the BA in LabVIEW is explained step by step. The toolkit has two parts. Optimisation can be performed on standard continuous test functions with the first part, and new functions and problems can be defined and solved. It has been observed that the minimum values of complex continuous functions can be reached quickly in experimental studies. With the second part, combinatorial optimisation can be conducted on travelling salesman problems (TSPs), and new TSPs can be defined and solved. It has been shown experimentally that minimum-cost solutions can be found in a small number of iterations using this toolkit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rao SS (2009) Engineering optimization: theory and practice. John Wiley & Sons Rao SS (2009) Engineering optimization: theory and practice. John Wiley & Sons
2.
Zurück zum Zitat Manea D, Titan E, Serban RR, Mihai M (2019) Statistical applications of optimization methods and mathematical programming. Proc Int Conf Appl Stat 1(1):312–328CrossRef Manea D, Titan E, Serban RR, Mihai M (2019) Statistical applications of optimization methods and mathematical programming. Proc Int Conf Appl Stat 1(1):312–328CrossRef
3.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) Bee algorithm—a novel approach to function optimisation. Cardiff University, The Manufacturing Engineering Centre Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) Bee algorithm—a novel approach to function optimisation. Cardiff University, The Manufacturing Engineering Centre
4.
Zurück zum Zitat Zarchi M, Attaran B (2017) Performance improvement of an active vibration absorber subsystem for an aircraft model using a Bees algorithm based on multi-objective intelligent optimization. Eng Optim 49(11):1905–1921CrossRef Zarchi M, Attaran B (2017) Performance improvement of an active vibration absorber subsystem for an aircraft model using a Bees algorithm based on multi-objective intelligent optimization. Eng Optim 49(11):1905–1921CrossRef
5.
Zurück zum Zitat Nafchi AM, Moradi A, Ghanbarzadeh A, Yaghoubi S, Moradi M (2012) An improved bees algorithm for solving optimization mechanical problems. In: 20th Annual international conference on mechanical engineering-ISME, School of Mechanical Engineering, Shiraz University, Shiraz, Iran Nafchi AM, Moradi A, Ghanbarzadeh A, Yaghoubi S, Moradi M (2012) An improved bees algorithm for solving optimization mechanical problems. In: 20th Annual international conference on mechanical engineering-ISME, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
6.
Zurück zum Zitat Shouran M, Anayi F, Packianather M (2021) Design of sliding mode control optimised by the Bees algorithm for LFC in the Great Britain power system. Mater Today Shouran M, Anayi F, Packianather M (2021) Design of sliding mode control optimised by the Bees algorithm for LFC in the Great Britain power system. Mater Today
7.
Zurück zum Zitat Acar O, Kalyoncu M, Hassan A (2018) The Bees algorithm for design optimization of a gripper mechanism. J Selcuk-Technic Spec. Issue 69–86 Acar O, Kalyoncu M, Hassan A (2018) The Bees algorithm for design optimization of a gripper mechanism. J Selcuk-Technic Spec. Issue 69–86
8.
Zurück zum Zitat Onder A, Incebay O, Sen MA, Yapici R, Kalyoncu M (2021) Heuristic optimization of impeller sidewall gaps based on the Bees algorithm for a centrifugal blood pump by CFD. Int J Artif Organs 44(10):765–772CrossRef Onder A, Incebay O, Sen MA, Yapici R, Kalyoncu M (2021) Heuristic optimization of impeller sidewall gaps based on the Bees algorithm for a centrifugal blood pump by CFD. Int J Artif Organs 44(10):765–772CrossRef
9.
Zurück zum Zitat Alzaqebah M, Jawarneh S, Sarim HM, Abdullah S (2018) Bees algorithm for vehicle routing problems with time windows. Int J Mach Learn Comput 8(3):236–240CrossRef Alzaqebah M, Jawarneh S, Sarim HM, Abdullah S (2018) Bees algorithm for vehicle routing problems with time windows. Int J Mach Learn Comput 8(3):236–240CrossRef
10.
Zurück zum Zitat Braiwish NY, Anayi FJ, Fahmy AA, Eldukhri EE (2014) Design optimisation of permanent magnet synchronous motor for electric vehicles traction using the Bees algorithm. In: 49th International universities power engineering conference (UPEC), Cluj-Napoca, Romania. (2014) Braiwish NY, Anayi FJ, Fahmy AA, Eldukhri EE (2014) Design optimisation of permanent magnet synchronous motor for electric vehicles traction using the Bees algorithm. In: 49th International universities power engineering conference (UPEC), Cluj-Napoca, Romania. (2014)
11.
Zurück zum Zitat Ismail AH, Hartono N, Zeybek S, Pham DT (2020) Using the Bees algorithm to solve combinatorial optimisation problems for TSPLIB. IOP Conf Ser: Mater Sci Eng 847:1–9 Ismail AH, Hartono N, Zeybek S, Pham DT (2020) Using the Bees algorithm to solve combinatorial optimisation problems for TSPLIB. IOP Conf Ser: Mater Sci Eng 847:1–9
12.
Zurück zum Zitat Koc E (2010) Bees algorithm: theory, improvements and applications. PhD Thesis, Cardiff University, UK Koc E (2010) Bees algorithm: theory, improvements and applications. PhD Thesis, Cardiff University, UK
15.
Zurück zum Zitat Colak I, Bulbul HI, Sahin M (2013) System identification and control of a wound rotor AC induction machine for wind turbine. In: International conference on renewable energy research and applications (ICRERA), Madrid, Spain, pp 1053–1057 Colak I, Bulbul HI, Sahin M (2013) System identification and control of a wound rotor AC induction machine for wind turbine. In: International conference on renewable energy research and applications (ICRERA), Madrid, Spain, pp 1053–1057
16.
Zurück zum Zitat Colak I, Bulbul HI, Sagiroglu S, Sahin M (2012) Modeling a permanent magnet synchronous generator used in wind turbine and the realization of voltage control on the model with artificial neural networks. In: International conference on renewable energy research and applications (ICRERA), Nagasaki, Japan, pp 1–6 Colak I, Bulbul HI, Sagiroglu S, Sahin M (2012) Modeling a permanent magnet synchronous generator used in wind turbine and the realization of voltage control on the model with artificial neural networks. In: International conference on renewable energy research and applications (ICRERA), Nagasaki, Japan, pp 1–6
17.
Zurück zum Zitat Sheoran Y, Kumar V, Rana KPS, Mishra P, Kumar J, Nair SS (2015) Development of backtracking search optimization algorithm toolkit in LabVIEW™. Procedia Comput Sci 57:241–248CrossRef Sheoran Y, Kumar V, Rana KPS, Mishra P, Kumar J, Nair SS (2015) Development of backtracking search optimization algorithm toolkit in LabVIEW™. Procedia Comput Sci 57:241–248CrossRef
20.
Zurück zum Zitat Aria M (2013) Educational simulator for teaching of particle swarm optimization in LabVIEW. TELEKONTRAN 1(1):1–15 Aria M (2013) Educational simulator for teaching of particle swarm optimization in LabVIEW. TELEKONTRAN 1(1):1–15
21.
Zurück zum Zitat Thakur KS, Kumar V, Rana KPS, Mishra P, Kumar J, Nair SS (2015) Development of Bat algorithm toolkit in LabVIEW. In: International conference on computing, communication and automation (ICCCA2015), pp 5–10 Thakur KS, Kumar V, Rana KPS, Mishra P, Kumar J, Nair SS (2015) Development of Bat algorithm toolkit in LabVIEW. In: International conference on computing, communication and automation (ICCCA2015), pp 5–10
22.
Zurück zum Zitat Gupta S, Kumar V, Rana KPS, Mishra P, Kumar J (2016) Development of Ant lion optimizer toolkit in LabVIEW. In: 1st International conference on innovation and challenges in cyber security (ICICCS 2016), pp 251–256 Gupta S, Kumar V, Rana KPS, Mishra P, Kumar J (2016) Development of Ant lion optimizer toolkit in LabVIEW. In: 1st International conference on innovation and challenges in cyber security (ICICCS 2016), pp 251–256
23.
Zurück zum Zitat Gupta S, Rana KPS, Kumar V, Mishra P, Kumar J, Nair SS (2015) Development of a grey wolf optimizer toolkit in LabVIEW. In: 1st International conference on futuristic trend in computational analysis and knowledge management (ABLAZE 2015), pp 107–113 Gupta S, Rana KPS, Kumar V, Mishra P, Kumar J, Nair SS (2015) Development of a grey wolf optimizer toolkit in LabVIEW. In: 1st International conference on futuristic trend in computational analysis and knowledge management (ABLAZE 2015), pp 107–113
24.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The Bees algorithm—a novel tool for complex optimisation problems. In: Pham DT, Eldukhri EE, Soroka AJ (eds) Proceedings of the 2nd Virtual international conference on intelligent production machines and systems, Elsevier (Oxford), pp 454–460 Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The Bees algorithm—a novel tool for complex optimisation problems. In: Pham DT, Eldukhri EE, Soroka AJ (eds) Proceedings of the 2nd Virtual international conference on intelligent production machines and systems, Elsevier (Oxford), pp 454–460
25.
Zurück zum Zitat Pham DT, Castellani M (2009) The Bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2919–2938CrossRef Pham DT, Castellani M (2009) The Bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2919–2938CrossRef
26.
Zurück zum Zitat Baronti L, Castellani M, Pham DT (2020) An analysis of the search mechanisms of the bees algorithm. Swarm Evol Comput 59:100746CrossRef Baronti L, Castellani M, Pham DT (2020) An analysis of the search mechanisms of the bees algorithm. Swarm Evol Comput 59:100746CrossRef
28.
Zurück zum Zitat Wasim AH, Shahnorbanun S, Siti NH (2017) The variants of the Bees algorithm (BA): a survey. Artif Intell Rev 47:67–121CrossRef Wasim AH, Shahnorbanun S, Siti NH (2017) The variants of the Bees algorithm (BA): a survey. Artif Intell Rev 47:67–121CrossRef
29.
Zurück zum Zitat Du X, Ma Y, Wei X, Jegatheesan V (2020) Optimal parameter estimation in activated sludge process based wastewater treatment practice. Water 12(9):2604CrossRef Du X, Ma Y, Wei X, Jegatheesan V (2020) Optimal parameter estimation in activated sludge process based wastewater treatment practice. Water 12(9):2604CrossRef
30.
Zurück zum Zitat Liang YC, Cuevas Juarez JRA (2020) Self-adaptive virus optimization algorithm for continuous optimization problems. Soft Comput 24(17):13147–13166 Liang YC, Cuevas Juarez JRA (2020) Self-adaptive virus optimization algorithm for continuous optimization problems. Soft Comput 24(17):13147–13166
31.
Zurück zum Zitat Tansui D, Thammano, A (2017) Nature-inspired optimization method: hydrozoan algorithm for solving continuous problems. In: 2017 18th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 23–28 Tansui D, Thammano, A (2017) Nature-inspired optimization method: hydrozoan algorithm for solving continuous problems. In: 2017 18th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 23–28
32.
Zurück zum Zitat Tansui D, Thammano A (2019) An enhanced Bat algorithm with random walk for solving continuous optimization problems. In: 2019 20th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 39–44 Tansui D, Thammano A (2019) An enhanced Bat algorithm with random walk for solving continuous optimization problems. In: 2019 20th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 39–44
33.
Zurück zum Zitat Karaboga D, Gorkemli B (2019) Solving traveling salesman problem by using combinatorial artificial bee colony algorithms. Int J Artif Intell Tools 28(1):1950004 Karaboga D, Gorkemli B (2019) Solving traveling salesman problem by using combinatorial artificial bee colony algorithms. Int J Artif Intell Tools 28(1):1950004
34.
Zurück zum Zitat Sahin M (2022) Solving TSP by using combinatorial Bees algorithm with nearest neighbor method. Neural Comput Appl 1–17 Sahin M (2022) Solving TSP by using combinatorial Bees algorithm with nearest neighbor method. Neural Comput Appl 1–17
36.
Zurück zum Zitat Lambiase A, Iannone R, Miranda S, Lambiase A, Pham DT (2016) Bees algorithm for effective supply chains configuration. Int J Eng Bus Manage 8:1–9CrossRef Lambiase A, Iannone R, Miranda S, Lambiase A, Pham DT (2016) Bees algorithm for effective supply chains configuration. Int J Eng Bus Manage 8:1–9CrossRef
37.
Zurück zum Zitat Xu W, Tang Q, Liu J, Liu Z, Zhou Z, Pham DT (2020) Disassembly sequence planning using discrete Bees algorithm for human-robot collaboration in remanufacturing. Rob Comput-Integr Manuf 62:101860CrossRef Xu W, Tang Q, Liu J, Liu Z, Zhou Z, Pham DT (2020) Disassembly sequence planning using discrete Bees algorithm for human-robot collaboration in remanufacturing. Rob Comput-Integr Manuf 62:101860CrossRef
38.
Zurück zum Zitat Ezugwu AE, Adewumi AO (2017) Discrete symbiotic organisms search algorithm for travelling salesman problem. Expert Syst Appl 87:70–78CrossRef Ezugwu AE, Adewumi AO (2017) Discrete symbiotic organisms search algorithm for travelling salesman problem. Expert Syst Appl 87:70–78CrossRef
39.
Zurück zum Zitat Tuani AF, Keedwell E, Collett M (2020) Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem. Appl Soft Comput J 97:106720CrossRef Tuani AF, Keedwell E, Collett M (2020) Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem. Appl Soft Comput J 97:106720CrossRef
Metadaten
Titel
Development of the Bees Algorithm Toolkit for Optimisation in LabVIEW
verfasst von
Murat Sahin
D. T. Pham
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.