Skip to main content

2020 | OriginalPaper | Buchkapitel

DHE\(^{2}\): Distributed Hybrid Evolution Engine for Performance Optimizations of Computationally Intensive Applications

verfasst von : Oana Stroie, Elena-Simona Apostol, Ciprian-Octavian Truică

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A large number of real-world optimization and search problems are too computationally intensive to be solved due to their large state space. Therefore, a mechanism for generating approximate solutions must be adopted. Genetic Algorithms, a subclass of Evolutionary Algorithms, represent one of the widely used methods of finding and approximating useful solutions to hard problems. Due to their population-based logic and iterative behaviour, Evolutionary Algorithms are very well suited for parallelization and distribution. Several distributed models have been proposed to meet the challenges of implementing parallel Evolutionary Algorithms. Among them, the MapReduce paradigm proved to be a proper abstraction of mapping the evolutionary process. In this paper, we propose a generic framework, i.e., DHE\(^{2}\) (Distributed Hybrid Evolution Engine), that implements distributed Evolutionary Algorithms on top of the MapReduce open-source implementation in Apache Hadoop. Within DHE\(^{2}\), we propose and implement two distributed hybrid evolution models, i.e., the MasterSlaveIslands and MicroMacroIslands models, alongside a real-world application that avoids the local optimum for clustering in an efficient and performant way. The experiments for the proposed application are used to demonstrate DHE\(^{2}\) increased performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Madi, N., Ludwig, S.A.: Scaling genetic programming for data classification using MapReduce methodology. In: World Congress on Nature and Biologically Inspired Computing, pp. 132–139. IEEE (2013) Al-Madi, N., Ludwig, S.A.: Scaling genetic programming for data classification using MapReduce methodology. In: World Congress on Nature and Biologically Inspired Computing, pp. 132–139. IEEE (2013)
2.
Zurück zum Zitat Alshammari, S., Zolkepli, M.B., Abdullah, R.B.: Genetic algorithm based parallel k-means data clustering algorithm using MapReduce programming paradigm on hadoop environment (GAPKCA). In: Recent Advances on Soft Computing and Data Mining. pp. 98–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36056-6_10 Alshammari, S., Zolkepli, M.B., Abdullah, R.B.: Genetic algorithm based parallel k-means data clustering algorithm using MapReduce programming paradigm on hadoop environment (GAPKCA). In: Recent Advances on Soft Computing and Data Mining. pp. 98–108. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-36056-6_​10
4.
Zurück zum Zitat Di Geronimo, L., Ferrucci, F., Murolo, A., Sarro, F.: A parallel genetic algorithm based on hadoop MapReduce for the automatic generation of JUnit test suites. In: International Conference on Software Testing, Verification and Validation. pp. 785–793. IEEE (2012) Di Geronimo, L., Ferrucci, F., Murolo, A., Sarro, F.: A parallel genetic algorithm based on hadoop MapReduce for the automatic generation of JUnit test suites. In: International Conference on Software Testing, Verification and Validation. pp. 785–793. IEEE (2012)
5.
Zurück zum Zitat Douzas, G., Bacao, F., Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 465, 1–20 (2018)CrossRef Douzas, G., Bacao, F., Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 465, 1–20 (2018)CrossRef
6.
Zurück zum Zitat Ferrucci, F., Salza, P., Sarro, F.: Using hadoop MapReduce for parallel genetic algorithms: a comparison of the global, grid and island models. Evol. Computat. 26(4), 535–567 (2018)CrossRef Ferrucci, F., Salza, P., Sarro, F.: Using hadoop MapReduce for parallel genetic algorithms: a comparison of the global, grid and island models. Evol. Computat. 26(4), 535–567 (2018)CrossRef
8.
Zurück zum Zitat Jin, C., Vecchiola, C., Buyya, R.: MRPGA: an extension of MapReduce for parallelizing genetic algorithms. In: International Conference on eScience, pp. 214–221. IEEE (2008) Jin, C., Vecchiola, C., Buyya, R.: MRPGA: an extension of MapReduce for parallelizing genetic algorithms. In: International Conference on eScience, pp. 214–221. IEEE (2008)
9.
Zurück zum Zitat Keco, D., Subasi, A.: Parallelization of genetic algorithms using hadoop map/reduce. Southeast Europe J. Soft Comput. 1(2), 56–59 (2012)CrossRef Keco, D., Subasi, A.: Parallelization of genetic algorithms using hadoop map/reduce. Southeast Europe J. Soft Comput. 1(2), 56–59 (2012)CrossRef
10.
Zurück zum Zitat Lyubimov, D., Palumbo, A.: Apache Mahout: Beyond MapReduce. CreateSpace Independent Publishing Platform (2016) Lyubimov, D., Palumbo, A.: Apache Mahout: Beyond MapReduce. CreateSpace Independent Publishing Platform (2016)
11.
Zurück zum Zitat López, S., Márquez, A.A., Márquez, F.A., Peregrín, A.: Evolutionary design of linguistic fuzzy regression systems with adaptive defuzzification in big data environments. Cogn. Computat. 11(3), 388–399 (2019)CrossRef López, S., Márquez, A.A., Márquez, F.A., Peregrín, A.: Evolutionary design of linguistic fuzzy regression systems with adaptive defuzzification in big data environments. Cogn. Computat. 11(3), 388–399 (2019)CrossRef
12.
Zurück zum Zitat Rajeswari, D., Prakash, M., Suresh, J.: Computational grid scheduling architecture using MapReduce model-based non-dominated sorting geneticalgorithm. Soft Comput. 23(18), 8335–8347 (2019) Rajeswari, D., Prakash, M., Suresh, J.: Computational grid scheduling architecture using MapReduce model-based non-dominated sorting geneticalgorithm. Soft Comput. 23(18), 8335–8347 (2019)
13.
Zurück zum Zitat Verma, A., Llorà, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms using MapReduce. In: International Conference on Intelligent Systems Design and Applications, pp. 13–18. IEEE (2009) Verma, A., Llorà, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms using MapReduce. In: International Conference on Intelligent Systems Design and Applications, pp. 13–18. IEEE (2009)
Metadaten
Titel
DHE: Distributed Hybrid Evolution Engine for Performance Optimizations of Computationally Intensive Applications
verfasst von
Oana Stroie
Elena-Simona Apostol
Ciprian-Octavian Truică
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_2