Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 21/2018

31.08.2018

Diblock conjugated polyelectrolyte electron transport layer modulating the morphology of the active layer for efficient nonfullerene organic solar cells

verfasst von: Dan Zhou, Yuancheng Qin, Rong Zhong, Haitao Xu, Yongfen Tong, Bin Hu, Yu Xie

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 21/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To acquire high-performance nonfullerene organic solar cells (OSCs), the effective approach is to explore new interfacial layer that not only can modulate the interfacial contact, but can also tune the morphology of the active layer. A diblock CPE PFEO-b-PTNBr with polyfluorene and polythiophene backbone, quaternary ammonium salt and ethylene oxy polar side chains, has been used to modify ZnO as ETL for PBDB-T:ITIC OSCs. The influences of the diblock CPE PFEO-b-PTNBr electron transport layer (ETL) on the morphology and crystalline properties of the PBDB-T:ITIC, exciton diffusion and transfer, and the device performances have been thoroughly investigated. Remarkably, the self-assembled diblock polymer PFEO-b-PTNBr can really induce the corresponding PBDB-T:ITIC active layer to obtain an ordered nano-fiber morphology. Consequently, in sharp comparison to the OSC utilizing ZnO as ETL, the performances of the device with the ZnO/PFEO-b-PTNBr ETL have been simultaneously enhanced, exhibiting a remarkably superior power conversion efficiency of 10.8%. These findings manifest that the diblock CPE PFEO-b-PTNBr is a promising ETL in nonfullerene OSCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995)CrossRef G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995)CrossRef
2.
Zurück zum Zitat X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors. Nat. Photonics 7, 825 (2013)CrossRef X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors. Nat. Photonics 7, 825 (2013)CrossRef
3.
Zurück zum Zitat L. Gao, Z.G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei, Y. Li, All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016)CrossRef L. Gao, Z.G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei, Y. Li, All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016)CrossRef
4.
Zurück zum Zitat G.H. Jun, S.H. Jin, B. Lee, B.H. Kim, W.S. Chae, S.H. Hong, S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy Environ. Sci. 6, 3000–3006 (2013)CrossRef G.H. Jun, S.H. Jin, B. Lee, B.H. Kim, W.S. Chae, S.H. Hong, S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy Environ. Sci. 6, 3000–3006 (2013)CrossRef
5.
Zurück zum Zitat D. Zhou, S. Xiong, L. Chen, X. Cheng, H. Xu, Y. Zhou, F. Liu, Y. Chen, A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chem. Commun. 54, 563–566 (2018)CrossRef D. Zhou, S. Xiong, L. Chen, X. Cheng, H. Xu, Y. Zhou, F. Liu, Y. Chen, A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chem. Commun. 54, 563–566 (2018)CrossRef
6.
Zurück zum Zitat Z. Li, W. Zhang, X. Xu, Z. Genene, D.D.C. Rasi, W. Mammo, A. Yartsev, M.R. Andersson, R.A.J. Janssen, E. Wang, High-performance and stable all-polymer solar cells using donor and acceptor polymers with complementary absorption. Adv. Energy Mater. 7, 1602722 (2017)CrossRef Z. Li, W. Zhang, X. Xu, Z. Genene, D.D.C. Rasi, W. Mammo, A. Yartsev, M.R. Andersson, R.A.J. Janssen, E. Wang, High-performance and stable all-polymer solar cells using donor and acceptor polymers with complementary absorption. Adv. Energy Mater. 7, 1602722 (2017)CrossRef
7.
Zurück zum Zitat X. Zhang, B. Zhang, X. Ouyang, L. Chen, H. Wu, Polymer solar cells employing water-soluble polypyrrole nanoparticles as dopants of PEDOT:PSS with enhanced efficiency and stability. J. Phys. Chem. C 121, 18378–18384 (2017)CrossRef X. Zhang, B. Zhang, X. Ouyang, L. Chen, H. Wu, Polymer solar cells employing water-soluble polypyrrole nanoparticles as dopants of PEDOT:PSS with enhanced efficiency and stability. J. Phys. Chem. C 121, 18378–18384 (2017)CrossRef
8.
Zurück zum Zitat R. Zhao, C. Dou, Z. Xie, J. Liu, L. Wang, Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew. Chem. Int. Ed. 55, 5313–5317 (2016)CrossRef R. Zhao, C. Dou, Z. Xie, J. Liu, L. Wang, Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew. Chem. Int. Ed. 55, 5313–5317 (2016)CrossRef
9.
Zurück zum Zitat D. Zhou, H. Xu, Y. Qin, X. Zhong, M. Li, B. Hu, Y. Tong, Y. Xie, Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. J. Mater. Sci. 53, 7715–7724 (2018)CrossRef D. Zhou, H. Xu, Y. Qin, X. Zhong, M. Li, B. Hu, Y. Tong, Y. Xie, Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. J. Mater. Sci. 53, 7715–7724 (2018)CrossRef
10.
Zurück zum Zitat C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen, S.R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018)CrossRef C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen, S.R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018)CrossRef
11.
Zurück zum Zitat F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 29, 1700144 (2017)CrossRef F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 29, 1700144 (2017)CrossRef
12.
Zurück zum Zitat J.E. Anthony, Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 23, 583–590 (2010)CrossRef J.E. Anthony, Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 23, 583–590 (2010)CrossRef
13.
Zurück zum Zitat B. Kan, H. Feng, X. Wan, F. Liu, X. Ke, Y. Wang, Y. Wang, H. Zhang, C. Li, J. Hou, Y. Chen, Small-molecule acceptor based on the heptacyclic benzodi (cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 139, 4929–4934 (2017)CrossRef B. Kan, H. Feng, X. Wan, F. Liu, X. Ke, Y. Wang, Y. Wang, H. Zhang, C. Li, J. Hou, Y. Chen, Small-molecule acceptor based on the heptacyclic benzodi (cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 139, 4929–4934 (2017)CrossRef
14.
Zurück zum Zitat D. Liu, B. Yang, B. Jang, B. Xu, S. Zhang, C. He, H.Y. Woo, J. Hou, Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 10, 546–551 (2017)CrossRef D. Liu, B. Yang, B. Jang, B. Xu, S. Zhang, C. He, H.Y. Woo, J. Hou, Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 10, 546–551 (2017)CrossRef
15.
Zurück zum Zitat S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C.Z. Li, T.P. Russell, H. Chen, An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 30, 1705208 (2017)CrossRef S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C.Z. Li, T.P. Russell, H. Chen, An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 30, 1705208 (2017)CrossRef
16.
Zurück zum Zitat Y. Qin, Y. Chen, Y. Cui, S. Zhang, H. Yao, J. Huang, W. Li, Z. Zheng, J. Hou, Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017)CrossRef Y. Qin, Y. Chen, Y. Cui, S. Zhang, H. Yao, J. Huang, W. Li, Z. Zheng, J. Hou, Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017)CrossRef
17.
Zurück zum Zitat W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cell. J. Am. Chem. Soc. 139, 7148–7151 (2017)CrossRef W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cell. J. Am. Chem. Soc. 139, 7148–7151 (2017)CrossRef
18.
Zurück zum Zitat B. Kan, J. Zhang, F. Liu, X. Wan, C. Li, X. Ke, Y. Wang, H. Feng, Y. Zhang, G.R.H. Long, R.H. FriendFriend, A.A. Bakulin, R.H. Friend, Y. Chen, Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells. Adv. Mater. 30, 1704904 (2018)CrossRef B. Kan, J. Zhang, F. Liu, X. Wan, C. Li, X. Ke, Y. Wang, H. Feng, Y. Zhang, G.R.H. Long, R.H. FriendFriend, A.A. Bakulin, R.H. Friend, Y. Chen, Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells. Adv. Mater. 30, 1704904 (2018)CrossRef
19.
Zurück zum Zitat J. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018)CrossRef J. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018)CrossRef
20.
Zurück zum Zitat T. Li, S. Dai, Z. Ke, L. Yang, J. Wang, C. Yan, W. Ma, X. Zhan, Fused tris (thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells. Adv. Mater. 30, 1705969 (2018)CrossRef T. Li, S. Dai, Z. Ke, L. Yang, J. Wang, C. Yan, W. Ma, X. Zhan, Fused tris (thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells. Adv. Mater. 30, 1705969 (2018)CrossRef
21.
Zurück zum Zitat Z. Zhang, J. Yu, X. Yin, Z. Hu, Y. Jiang, J. Sun, J. Zhou, F. Zhang, T.P. Russell, F. Liu, W. Tang, Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells. Adv. Funct. Mater. 28, 1705095 (2018)CrossRef Z. Zhang, J. Yu, X. Yin, Z. Hu, Y. Jiang, J. Sun, J. Zhou, F. Zhang, T.P. Russell, F. Liu, W. Tang, Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells. Adv. Funct. Mater. 28, 1705095 (2018)CrossRef
22.
Zurück zum Zitat C.B. Nielsen, S. Holliday, H.Y. Chen, S.J. Cryer, I. McCulloch, Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015)CrossRef C.B. Nielsen, S. Holliday, H.Y. Chen, S.J. Cryer, I. McCulloch, Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015)CrossRef
23.
Zurück zum Zitat H. Bin, L. Gao, Z.G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M. Xiao, Y. Li, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016)CrossRef H. Bin, L. Gao, Z.G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M. Xiao, Y. Li, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016)CrossRef
24.
Zurück zum Zitat J. Zhu, Z. Ke, Q. Zhang, J. Wang, S. Dai, Y. Wu, Y. Lin, W. Ma, W. You, X. Zhan, Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: effect of extended conjugation. Adv. Mater. 30, 1704713 (2018)CrossRef J. Zhu, Z. Ke, Q. Zhang, J. Wang, S. Dai, Y. Wu, Y. Lin, W. Ma, W. You, X. Zhan, Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: effect of extended conjugation. Adv. Mater. 30, 1704713 (2018)CrossRef
25.
Zurück zum Zitat L. Ye, Y. Xiong, Q. Zhang, S. Li, C. Wang, Z. Jiang, J. Hou, W. You, H. Ade, Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 30, 1705485 (2018)CrossRef L. Ye, Y. Xiong, Q. Zhang, S. Li, C. Wang, Z. Jiang, J. Hou, W. You, H. Ade, Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 30, 1705485 (2018)CrossRef
26.
Zurück zum Zitat R. Kang, S.-H. Oh, D.-Y. Kim, Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells. ACS Appl. Mater. Interfaces 6, 6227–6236 (2014)CrossRef R. Kang, S.-H. Oh, D.-Y. Kim, Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells. ACS Appl. Mater. Interfaces 6, 6227–6236 (2014)CrossRef
27.
Zurück zum Zitat C. Xie, L. Chen, Y. Chen, Electrostatic self-assembled metal oxide/conjugated polyelectrolytes as electron-transporting layers for inverted solar cells with high efficiency. J. Phys. Chem. C 117, 24804–24814 (2013)CrossRef C. Xie, L. Chen, Y. Chen, Electrostatic self-assembled metal oxide/conjugated polyelectrolytes as electron-transporting layers for inverted solar cells with high efficiency. J. Phys. Chem. C 117, 24804–24814 (2013)CrossRef
28.
Zurück zum Zitat J. Kesters, S. Govaerts, G. Pirotte, J. Drijkoningen, M. Chevrier, N. Van den Brande, X.J. Liu, M. Fahlman, B. Van Mele, L. Lutsen, D. Vanderzande, J. Manca, S. Clément, E. Von Hauff, W. Maes, High-permittivity conjugated polyelectrolyte interlayers for high-performance bulk heterojunction organic solar cells. ACS Appl. Mater. Interfaces 8, 6309–6314 (2016)CrossRef J. Kesters, S. Govaerts, G. Pirotte, J. Drijkoningen, M. Chevrier, N. Van den Brande, X.J. Liu, M. Fahlman, B. Van Mele, L. Lutsen, D. Vanderzande, J. Manca, S. Clément, E. Von Hauff, W. Maes, High-permittivity conjugated polyelectrolyte interlayers for high-performance bulk heterojunction organic solar cells. ACS Appl. Mater. Interfaces 8, 6309–6314 (2016)CrossRef
29.
Zurück zum Zitat Y.M. Chang, C.Y. Leu, Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. J. Mater. Chem. A 1, 6446–6451 (2013)CrossRef Y.M. Chang, C.Y. Leu, Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. J. Mater. Chem. A 1, 6446–6451 (2013)CrossRef
30.
Zurück zum Zitat J. Subbiah, V.D. Mitchell, N.K.C. Hui, D.J. Jones, W.W.H. Wong, A green route to conjugated polyelectrolyte interlayers for high-performance solar cells. Angew. Chem. 129, 8551–8554 (2017)CrossRef J. Subbiah, V.D. Mitchell, N.K.C. Hui, D.J. Jones, W.W.H. Wong, A green route to conjugated polyelectrolyte interlayers for high-performance solar cells. Angew. Chem. 129, 8551–8554 (2017)CrossRef
31.
Zurück zum Zitat U.K. Aryal, N. Chakravarthi, H.Y. Park, H. Bae, S.H. Jin, Y.S. Gal, Highly efficient polyacetylene-based polyelectrolytes as cathode interfacial layers for organic solar cell applications. Org. Electron. 53, 265–272 (2018)CrossRef U.K. Aryal, N. Chakravarthi, H.Y. Park, H. Bae, S.H. Jin, Y.S. Gal, Highly efficient polyacetylene-based polyelectrolytes as cathode interfacial layers for organic solar cell applications. Org. Electron. 53, 265–272 (2018)CrossRef
32.
Zurück zum Zitat W. Zhang, Y. Li, L. Zhu, X. Liu, C. Song, X. Li, X. Sun, J. Fang, A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. Chem. Commun. 53, 2005–2008 (2017)CrossRef W. Zhang, Y. Li, L. Zhu, X. Liu, C. Song, X. Li, X. Sun, J. Fang, A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. Chem. Commun. 53, 2005–2008 (2017)CrossRef
33.
Zurück zum Zitat W. Zhang, Y. Li, L. Zhu, X. Liu, C. Song, X. Li, X. Sun, J. Fang, Highly efficient polymer solar cells with PTB7-based narrow band-gap conjugated polyelectrolytes as cathode interlayers: device performance dependence on the ionic pendants. Org. Electron. 47, 94–101 (2017)CrossRef W. Zhang, Y. Li, L. Zhu, X. Liu, C. Song, X. Li, X. Sun, J. Fang, Highly efficient polymer solar cells with PTB7-based narrow band-gap conjugated polyelectrolytes as cathode interlayers: device performance dependence on the ionic pendants. Org. Electron. 47, 94–101 (2017)CrossRef
34.
Zurück zum Zitat G. Xu, L. Gao, H. Xu, L. Huang, Y. Xie, X. Cheng, Y. Li, L. Chen, Y. Chen, n-type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. J. Mater. Chem. A 5, 13807–13816 (2017)CrossRef G. Xu, L. Gao, H. Xu, L. Huang, Y. Xie, X. Cheng, Y. Li, L. Chen, Y. Chen, n-type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. J. Mater. Chem. A 5, 13807–13816 (2017)CrossRef
35.
Zurück zum Zitat A. Gutacker, S. Adamczyk, A. Helfer, L.E. Garner, R.C. Evans, S.M. Fonseca, M. Knaapila, G.C. Bazan, H.D. Burrows, U. Scherf, All-conjugated polyelectrolyte block copolymers. J. Mater. Chem. 20, 1423–1430 (2010)CrossRef A. Gutacker, S. Adamczyk, A. Helfer, L.E. Garner, R.C. Evans, S.M. Fonseca, M. Knaapila, G.C. Bazan, H.D. Burrows, U. Scherf, All-conjugated polyelectrolyte block copolymers. J. Mater. Chem. 20, 1423–1430 (2010)CrossRef
36.
Zurück zum Zitat M. He, F. Qiu, Z. Lin, Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. J. Mater. Chem. 21, 17039–17048 (2011)CrossRef M. He, F. Qiu, Z. Lin, Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. J. Mater. Chem. 21, 17039–17048 (2011)CrossRef
37.
Zurück zum Zitat Y. Zhang, K. Tajima, K. Hirota, K. Hashimoto, Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation. J. Am. Chem. Soc. 130, 7812–7813 (2008)CrossRef Y. Zhang, K. Tajima, K. Hirota, K. Hashimoto, Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation. J. Am. Chem. Soc. 130, 7812–7813 (2008)CrossRef
38.
Zurück zum Zitat D. Zhou, X. Cheng, H. Xu, H. Yang, H. Liu, F. Wu, L. Chen, Y. Chen, Interface-induced face-on orientation of the active layer by self-assembled diblock conjugated polyelectrolytes for efficient organic photovoltaic cells. J. Mater. Chem. A 4, 18478–18489 (2016)CrossRef D. Zhou, X. Cheng, H. Xu, H. Yang, H. Liu, F. Wu, L. Chen, Y. Chen, Interface-induced face-on orientation of the active layer by self-assembled diblock conjugated polyelectrolytes for efficient organic photovoltaic cells. J. Mater. Chem. A 4, 18478–18489 (2016)CrossRef
39.
Zurück zum Zitat Q. Liang, J. Han, C. Song, X. Yu, D.M. Smilgies, K. Zhao, J. Liu, Y. Han, Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6, 15610–15620 (2018)CrossRef Q. Liang, J. Han, C. Song, X. Yu, D.M. Smilgies, K. Zhao, J. Liu, Y. Han, Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6, 15610–15620 (2018)CrossRef
Metadaten
Titel
Diblock conjugated polyelectrolyte electron transport layer modulating the morphology of the active layer for efficient nonfullerene organic solar cells
verfasst von
Dan Zhou
Yuancheng Qin
Rong Zhong
Haitao Xu
Yongfen Tong
Bin Hu
Yu Xie
Publikationsdatum
31.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 21/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9961-8

Weitere Artikel der Ausgabe 21/2018

Journal of Materials Science: Materials in Electronics 21/2018 Zur Ausgabe

Neuer Inhalt