Skip to main content
Erschienen in: Journal of Electronic Materials 10/2021

08.07.2021 | Original Research Article

Dielectric Properties and Phase Stabilization of PVDF Polymer in (1−x)PVDF/xBCZT Composite Films

verfasst von: Tarun Garg, Venkateswarlu Annapureddy, K. C. Sekhar, Dae-Yong Jeong, Navneet Dabra, Jasbir S. Hundal

Erschienen in: Journal of Electronic Materials | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyvinylidene fluoride (PVDF) is a semi-crystalline ferroelectric polymer which can be stabilized in its distinct electroactive polymorphs α and γ by selective processing techniques. In this article, to study the effect of processing temperature and barium calcium zirconium titanate (BCZT) ceramic-doping on PVDF phase stabilization, the pure PVDF and PVDF/BCZT composite films were fabricated by solution-casting and melt-pressing. The Fourier-transform infrared spectroscopy and x-ray diffraction studies showed that the pure PVDF and PVDF/BCZT composite films fabricated by solution-casting possessed the characteristic γ-PVDF peaks while melt-pressing stabilized PVDF mostly in the α-phase. The BCZT ceramic particles were found to have no significant effect on PVDF phase stabilization, but it enhanced the overall crystallinity of polymer matrix. The dielectric studies revealed that the relative permittivity (εr) of γ- and α-PVDF phases in pure PVDF film samples was ≈ 10 and 7.5 (at 120 Hz) respectively. The εr of PVDF/BCZT composite films having 50 wt.% BCZT content synthesized by solution-casting and melt-pressing were estimated to be ≈ 31 and 20 (at 120 Hz), respectively, which was about three times that of pure PVDF film synthesized by the respective technique. The value of loss tangent (tanδ) for pure PVDF films synthesized by solution-cast and melt-press technique were ≈ 0.07 and 0.35 (at 120 Hz) respectively. In temperature-dependent dielectric studies, γ-PVDF showed distinct α-relaxation peak at ≈ 120°C and polymer melting at temperature > 130°C. For α-PVDF, the increase in εr and tanδ was observed during α-relaxation transition at higher temperatures. The dielectric studies indicated that the introduction of BCZT ceramic particles in PVDF matrix increased the εr-value by enhancing the dipolar and interfacial polarizations in composites, while the decrease in tanδ-value was observed due to decrease in molecular dipoles with a decrease in wt.% of PVDF content. These phenomena collectively improved the overall electric properties of ceramic/polymer composites which makes them suitable candidates to explore for flexible electroactive material form.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).CrossRef P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).CrossRef
4.
Zurück zum Zitat K.S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct. 23, 1 (2014).CrossRef K.S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct. 23, 1 (2014).CrossRef
5.
Zurück zum Zitat M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, and D.M. de Leeuw, Nat. Mater. 12, 433 (2013).CrossRef M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, and D.M. de Leeuw, Nat. Mater. 12, 433 (2013).CrossRef
6.
Zurück zum Zitat Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015).CrossRef Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015).CrossRef
7.
Zurück zum Zitat F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, and K. Li, J. Memb. Sci. 375, 1 (2011).CrossRef F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, and K. Li, J. Memb. Sci. 375, 1 (2011).CrossRef
8.
9.
Zurück zum Zitat M.G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, Eur. Polym. J. 43, 1557 (2007).CrossRef M.G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, Eur. Polym. J. 43, 1557 (2007).CrossRef
10.
Zurück zum Zitat N.A. Hoque, P. Thakur, S. Roy, A. Kool, B. Bagchi, P. Biswas, M.M. Saikh, F. Khatun, S. Das, and P.P. Ray, MACS Appl. Mater. Interfaces 9, 23048 (2017).CrossRef N.A. Hoque, P. Thakur, S. Roy, A. Kool, B. Bagchi, P. Biswas, M.M. Saikh, F. Khatun, S. Das, and P.P. Ray, MACS Appl. Mater. Interfaces 9, 23048 (2017).CrossRef
11.
Zurück zum Zitat H. Wang, Q. Chen, W. Xia, X. Qiu, Q. Cheng, and G. Zhu, J. Appl. Polym. Sci. 135, 46324 (2018).CrossRef H. Wang, Q. Chen, W. Xia, X. Qiu, Q. Cheng, and G. Zhu, J. Appl. Polym. Sci. 135, 46324 (2018).CrossRef
12.
13.
Zurück zum Zitat S.P. Muduli, S. Parida, S.K. Rout, S. Rajput, and M. Kar, Mater. Res. Express 6, 095306 (2019).CrossRef S.P. Muduli, S. Parida, S.K. Rout, S. Rajput, and M. Kar, Mater. Res. Express 6, 095306 (2019).CrossRef
14.
Zurück zum Zitat I.O. Pariy, A.A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, M.A. Surmeneva, and R.A. Surmenev, Mater. Chem. Phys. 239, 122035 (2020).CrossRef I.O. Pariy, A.A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, M.A. Surmeneva, and R.A. Surmenev, Mater. Chem. Phys. 239, 122035 (2020).CrossRef
15.
Zurück zum Zitat T. Men, X. Liu, B. Jiang, X. Long, and H. Guo, Thin Solid Films 669, 579 (2019).CrossRef T. Men, X. Liu, B. Jiang, X. Long, and H. Guo, Thin Solid Films 669, 579 (2019).CrossRef
16.
Zurück zum Zitat V.K. Tiwari, Y. Lee, G. Song, K. Lib Kim, Y. Jung Park, and C. Park, J. Polym. Sci. Part B Polym. Phys. 56, 795 (2018).CrossRef V.K. Tiwari, Y. Lee, G. Song, K. Lib Kim, Y. Jung Park, and C. Park, J. Polym. Sci. Part B Polym. Phys. 56, 795 (2018).CrossRef
17.
Zurück zum Zitat S. Yang, F. Wang, X. Li, Y. Wu, T. Chang, Z. Hu, and G. An, Polymer (Guildf) 181, 121784 (2019).CrossRef S. Yang, F. Wang, X. Li, Y. Wu, T. Chang, Z. Hu, and G. An, Polymer (Guildf) 181, 121784 (2019).CrossRef
18.
Zurück zum Zitat S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R. Bera, L. Halder, A.K. Mishra, J.K. Kim, and B.B. Khatua, Nano Energy 59, 169 (2019).CrossRef S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R. Bera, L. Halder, A.K. Mishra, J.K. Kim, and B.B. Khatua, Nano Energy 59, 169 (2019).CrossRef
19.
Zurück zum Zitat S.-H. Kim, S.-J. Park, C.-Y. Cho, H.S. Kang, E.-H. Sohn, I.J. Park, J.-W. Ha, and S.G. Lee, RSC Adv. 9, 40286 (2019).CrossRef S.-H. Kim, S.-J. Park, C.-Y. Cho, H.S. Kang, E.-H. Sohn, I.J. Park, J.-W. Ha, and S.G. Lee, RSC Adv. 9, 40286 (2019).CrossRef
20.
Zurück zum Zitat P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, and S. Das, Nano Energy 44, 456 (2018).CrossRef P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, and S. Das, Nano Energy 44, 456 (2018).CrossRef
21.
Zurück zum Zitat A. Gebrekrstos, G. Prasanna Kar, G. Madras, A. Misra, and S. Bose, Polymer (Guildf) 181, 121764 (2019).CrossRef A. Gebrekrstos, G. Prasanna Kar, G. Madras, A. Misra, and S. Bose, Polymer (Guildf) 181, 121764 (2019).CrossRef
22.
Zurück zum Zitat N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski, J.G. Shapter, and A.V. Ellis, Energy Environ. Sci. 12, 1143 (2019).CrossRef N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski, J.G. Shapter, and A.V. Ellis, Energy Environ. Sci. 12, 1143 (2019).CrossRef
23.
Zurück zum Zitat P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, S. Roy, N. Sepay, S. Das, and P. Nandy, RSC Adv. 6, 26288 (2016).CrossRef P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, S. Roy, N. Sepay, S. Das, and P. Nandy, RSC Adv. 6, 26288 (2016).CrossRef
25.
Zurück zum Zitat S. Amiri, and A. Rahimi, Iran. Polym. J. (English Ed.) 25, 559 (2016).CrossRef S. Amiri, and A. Rahimi, Iran. Polym. J. (English Ed.) 25, 559 (2016).CrossRef
26.
Zurück zum Zitat U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005). U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005).
27.
Zurück zum Zitat H. Lu, L. Liu, J. Lin, W. Yang, L. Weng, X. Zhang, G. Chen, and W. Huang, J. Appl. Polym. Sci. 134, 45362 (2017).CrossRef H. Lu, L. Liu, J. Lin, W. Yang, L. Weng, X. Zhang, G. Chen, and W. Huang, J. Appl. Polym. Sci. 134, 45362 (2017).CrossRef
28.
Zurück zum Zitat M.E. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, and L. Pardo, Materials (Basel, Switzerland) 9, 21 (2016).CrossRef M.E. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, and L. Pardo, Materials (Basel, Switzerland) 9, 21 (2016).CrossRef
29.
30.
Zurück zum Zitat M. Bashir, and P. Rajendran, J. Intell. Mater. Syst. Struct. 29, 3681 (2018).CrossRef M. Bashir, and P. Rajendran, J. Intell. Mater. Syst. Struct. 29, 3681 (2018).CrossRef
31.
Zurück zum Zitat B. Stadlober, M. Zirkl, and M. Irimia-Vladu, Chem. Soc. Rev. 48, 1787 (2019).CrossRef B. Stadlober, M. Zirkl, and M. Irimia-Vladu, Chem. Soc. Rev. 48, 1787 (2019).CrossRef
32.
Zurück zum Zitat H.B. Jung, J.W. Kim, J.H. Lim, D.K. Kwon, D.H. Choi, and D.Y. Jeong, Electron. Mater. Lett. 16, 47 (2019).CrossRef H.B. Jung, J.W. Kim, J.H. Lim, D.K. Kwon, D.H. Choi, and D.Y. Jeong, Electron. Mater. Lett. 16, 47 (2019).CrossRef
33.
34.
Zurück zum Zitat X. Chen, X. Han, and Q.-D. Shen, Adv. Electron. Mater. 3, 1600460 (2017).CrossRef X. Chen, X. Han, and Q.-D. Shen, Adv. Electron. Mater. 3, 1600460 (2017).CrossRef
35.
Zurück zum Zitat B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313, 334 (2006).CrossRef B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313, 334 (2006).CrossRef
36.
Zurück zum Zitat H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, and C. Wan, Chem. Soc. Rev. 48, 4424 (2019).CrossRef H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, and C. Wan, Chem. Soc. Rev. 48, 4424 (2019).CrossRef
37.
38.
Zurück zum Zitat M. Guo, J. Jiang, Z. Shen, Y. Lin, C.W. Nan, and Y. Shen, Mater. Today 29, 49 (2019).CrossRef M. Guo, J. Jiang, Z. Shen, Y. Lin, C.W. Nan, and Y. Shen, Mater. Today 29, 49 (2019).CrossRef
39.
Zurück zum Zitat C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Mater. 2, 1 (2016). C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Mater. 2, 1 (2016).
40.
Zurück zum Zitat A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho Moreira, and M.J.M. Gomes, Ceram. Int. 45, 5808 (2019).CrossRef A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho Moreira, and M.J.M. Gomes, Ceram. Int. 45, 5808 (2019).CrossRef
42.
Zurück zum Zitat M. Peddigari, H. Palneedi, G.T. Hwang, and J. Ryu, J. Korean Ceram. Soc. 56, 1 (2019).CrossRef M. Peddigari, H. Palneedi, G.T. Hwang, and J. Ryu, J. Korean Ceram. Soc. 56, 1 (2019).CrossRef
43.
Zurück zum Zitat T. Garg, V. Annapureddy, K.C. Sekhar, D. Jeong, N. Dabra, and J.S. Hundal, Polym. Compos. 41, 5305 (2020).CrossRef T. Garg, V. Annapureddy, K.C. Sekhar, D. Jeong, N. Dabra, and J.S. Hundal, Polym. Compos. 41, 5305 (2020).CrossRef
45.
Zurück zum Zitat Z. Wang, K. Zhao, X. Guo, W. Sun, H. Jiang, X. Han, X. Tao, Z. Cheng, H. Zhao, H. Kimura, G. Yuan, J. Yin, and Z. Liu, J. Mater. Chem. C 1, 522 (2013).CrossRef Z. Wang, K. Zhao, X. Guo, W. Sun, H. Jiang, X. Han, X. Tao, Z. Cheng, H. Zhao, H. Kimura, G. Yuan, J. Yin, and Z. Liu, J. Mater. Chem. C 1, 522 (2013).CrossRef
46.
Zurück zum Zitat J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, and D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015).CrossRef J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, and D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015).CrossRef
47.
Zurück zum Zitat A.V. Reddy, K.C. Sekhar, N. Dabra, A. Nautiyal, J.S. Hundal, N.P. Pathak, and R. Nath, ISRN Mater. Sci. 2011, 1 (2011).CrossRef A.V. Reddy, K.C. Sekhar, N. Dabra, A. Nautiyal, J.S. Hundal, N.P. Pathak, and R. Nath, ISRN Mater. Sci. 2011, 1 (2011).CrossRef
48.
Zurück zum Zitat N. Kumar, N. Dabra, J.S. Hundal, and R. Nath, Ferroelectr. Lett. Sect. 40, 108 (2013).CrossRef N. Kumar, N. Dabra, J.S. Hundal, and R. Nath, Ferroelectr. Lett. Sect. 40, 108 (2013).CrossRef
49.
Zurück zum Zitat M. Sharma, J.K. Quamara, and A. Gaur, J. Mater. Sci. Mater. Electron. 29, 10875 (2018).CrossRef M. Sharma, J.K. Quamara, and A. Gaur, J. Mater. Sci. Mater. Electron. 29, 10875 (2018).CrossRef
50.
Zurück zum Zitat K. Tashiro, M. Kobayashi, and H. Tadokoro, Macromolecules 14, 1757 (1981).CrossRef K. Tashiro, M. Kobayashi, and H. Tadokoro, Macromolecules 14, 1757 (1981).CrossRef
51.
Zurück zum Zitat H.S. Mohanty, A. Kumar, P.K. Kulriya, R. Thomas, and D.K. Pradhan, Mater. Chem. Phys. 230, 221 (2019).CrossRef H.S. Mohanty, A. Kumar, P.K. Kulriya, R. Thomas, and D.K. Pradhan, Mater. Chem. Phys. 230, 221 (2019).CrossRef
52.
Zurück zum Zitat A.N. Arshad, M.H.M. Wahid, M. Rusop, W.H.A. Majid, R.H.Y. Subban, and M.D. Rozana, J. Nanomater. 2019, 1 (2019).CrossRef A.N. Arshad, M.H.M. Wahid, M. Rusop, W.H.A. Majid, R.H.Y. Subban, and M.D. Rozana, J. Nanomater. 2019, 1 (2019).CrossRef
53.
Zurück zum Zitat L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers (Basel) 10, 1 (2018).CrossRef L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers (Basel) 10, 1 (2018).CrossRef
54.
Zurück zum Zitat T. Garg, N. Dabra and J.S. Hundal, Proceedings of the National Conference on Materials Science (2021) Communicated. T. Garg, N. Dabra and J.S. Hundal, Proceedings of the National Conference on Materials Science (2021) Communicated.
55.
Zurück zum Zitat T.S. Chow, C.A. Liu, and R.C. Penwell, J. Polym. Sci. Polym. Phys. Ed. 14, 1311 (1976).CrossRef T.S. Chow, C.A. Liu, and R.C. Penwell, J. Polym. Sci. Polym. Phys. Ed. 14, 1311 (1976).CrossRef
57.
Zurück zum Zitat J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, and H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015).CrossRef J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, and H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015).CrossRef
58.
Zurück zum Zitat H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, and A. Kallel, Compos. Part B Eng. 45, 1199 (2013).CrossRef H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, and A. Kallel, Compos. Part B Eng. 45, 1199 (2013).CrossRef
59.
Zurück zum Zitat B. Hilczer, H. Smogór, and J. Goslar, J. Mater. Sci. 41, 117 (2006).CrossRef B. Hilczer, H. Smogór, and J. Goslar, J. Mater. Sci. 41, 117 (2006).CrossRef
60.
Zurück zum Zitat Z.M. Dang, L. Wang, H.Y. Wang, C.W. Nan, D. Xie, Y. Yin, and S.C. Tjong, Appl. Phys. Lett. 86, 1 (2005).CrossRef Z.M. Dang, L. Wang, H.Y. Wang, C.W. Nan, D. Xie, Y. Yin, and S.C. Tjong, Appl. Phys. Lett. 86, 1 (2005).CrossRef
61.
Zurück zum Zitat A. Pramanick, S. Misture, N.C. Osti, N. Jalarvo, S.O. Diallo, and E. Mamontov, Phys. Rev. B 96, 174103 (2017).CrossRef A. Pramanick, S. Misture, N.C. Osti, N. Jalarvo, S.O. Diallo, and E. Mamontov, Phys. Rev. B 96, 174103 (2017).CrossRef
62.
63.
Zurück zum Zitat F. Bensadoun, N. Kchit, C. Billotte, F. Trochu, and E. Ruiz, J. Nanomater. 2011, 1 (2011).CrossRef F. Bensadoun, N. Kchit, C. Billotte, F. Trochu, and E. Ruiz, J. Nanomater. 2011, 1 (2011).CrossRef
Metadaten
Titel
Dielectric Properties and Phase Stabilization of PVDF Polymer in (1−x)PVDF/xBCZT Composite Films
verfasst von
Tarun Garg
Venkateswarlu Annapureddy
K. C. Sekhar
Dae-Yong Jeong
Navneet Dabra
Jasbir S. Hundal
Publikationsdatum
08.07.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 10/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09075-4

Weitere Artikel der Ausgabe 10/2021

Journal of Electronic Materials 10/2021 Zur Ausgabe

Neuer Inhalt