Skip to main content
Erschienen in: Journal of Materials Science 16/2017

01.05.2017 | Ceramics

Dielectric properties of MgO–ZnO–TiO2-based ceramics at 1 MHz and THz frequencies

verfasst von: Shuang Wang, Quan Li, Jianqiang Gu, Jiaguang Han, Weili Zhang

Erschienen in: Journal of Materials Science | Ausgabe 16/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dielectric properties (ε and tan δ) of MZT-based ceramics can be tailored at both 1 MHz and the terahertz (THz) frequencies (0.2–2 THz) by CaTiO3 (CT) doping. CT was formed liquid phase during the sintering process and accelerated the densification of the ceramics. Doped with CT, the increase of the ε at 1 MHz could be explained by Lichtenecker expressions equation, and the tan δ is decreased at 1 MHz due to the high density. By doping with CT, the THz dielectric properties of ceramics can be modified, due to the variation of the lattice parameter and microstructure (porosity). At THz frequencies, ion displacement polarization is difficult to achieve, so that ε at THz is smaller than ε at 1 MHz according to Clausius–Mosotti equation. According to the four-parameter factorized oscillator model, the tan δ is increased with frequency up to THz frequencies. The power absorption of the MZT-based ceramics is lower than 10 cm−1 below 1 THz, and it is a good choice as a transparent material at terahertz domain, which may promote the development of terahertz devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang YG, Shunhua W, Liu J, Gao S (2011) Dielectric properties and microstructure of MgO–TiO2–ZnO–CaO ceramics. J Electron Mater 40(3):355–360CrossRef Zhang YG, Shunhua W, Liu J, Gao S (2011) Dielectric properties and microstructure of MgO–TiO2–ZnO–CaO ceramics. J Electron Mater 40(3):355–360CrossRef
2.
Zurück zum Zitat Li B, Zhang S, Yuan Y, Zhou X, Xiang L (2009) Dielectric properties and microstructure of TiO2 modified (ZnMg)TiO3 microwave ceramics with CaO–B2O3–SiO2. J Mater Sci 44(18):4993–4998. doi:10.1007/s10853-009-3763-6 CrossRef Li B, Zhang S, Yuan Y, Zhou X, Xiang L (2009) Dielectric properties and microstructure of TiO2 modified (ZnMg)TiO3 microwave ceramics with CaO–B2O3–SiO2. J Mater Sci 44(18):4993–4998. doi:10.​1007/​s10853-009-3763-6 CrossRef
3.
Zurück zum Zitat Chen G-H, Di J-C, Xu H-R, Jiang M-H, Yuan C-L (2012) Microwave dielectric properties of Ca4La2Ti5 − x(Mg1/3Nb2/3)xO17 ceramics. J Am Ceram Soc 95:1394–1397CrossRef Chen G-H, Di J-C, Xu H-R, Jiang M-H, Yuan C-L (2012) Microwave dielectric properties of Ca4La2Ti5 − x(Mg1/3Nb2/3)xO17 ceramics. J Am Ceram Soc 95:1394–1397CrossRef
4.
Zurück zum Zitat Liang J, Lu W, Lei W, Fan G, Ma H (2013) A new route to improve microwave dielectric properties of low-temperature sintered Li2TiO3-based ceramics. J Mater Sci Mater Electron 24:3625–3628CrossRef Liang J, Lu W, Lei W, Fan G, Ma H (2013) A new route to improve microwave dielectric properties of low-temperature sintered Li2TiO3-based ceramics. J Mater Sci Mater Electron 24:3625–3628CrossRef
5.
Zurück zum Zitat Yoo S-H, Yoon KH, Choi J-W (2008) Microwave dielectric loss of thermally stressed MgTiO3 via TEM observation. J Electroceram 21:8–11CrossRef Yoo S-H, Yoon KH, Choi J-W (2008) Microwave dielectric loss of thermally stressed MgTiO3 via TEM observation. J Electroceram 21:8–11CrossRef
6.
7.
Zurück zum Zitat Zhang Q, Yang H, Zou J (2009) Microwave dielectric properties and low-temperature sintering of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics with Li2O–B2O3. J Mater Sci Mater Electron 20:181–185CrossRef Zhang Q, Yang H, Zou J (2009) Microwave dielectric properties and low-temperature sintering of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics with Li2O–B2O3. J Mater Sci Mater Electron 20:181–185CrossRef
8.
Zurück zum Zitat Li H, Tang B, Zhang S, Li Y, Qing Z, Yang H, Chen H, Wang C (2014) Composite dielectrics (1 − x) (Mg0.97Zn0.03)2(Ti0.95Sn0.05)O4–xCaTiO3 suitable for microwave applications. J Mater Sci Mater Electron 25:3318–3323CrossRef Li H, Tang B, Zhang S, Li Y, Qing Z, Yang H, Chen H, Wang C (2014) Composite dielectrics (1 − x) (Mg0.97Zn0.03)2(Ti0.95Sn0.05)O4–xCaTiO3 suitable for microwave applications. J Mater Sci Mater Electron 25:3318–3323CrossRef
9.
Zurück zum Zitat Hao SU, Shun-Hua WU, Yan HY (2004) Dielectric properties of B2O3 Doped MgTiO3–CaTiO3 system ceramics. J Wuhan Univ Technol-Mater Sci 19:62–64CrossRef Hao SU, Shun-Hua WU, Yan HY (2004) Dielectric properties of B2O3 Doped MgTiO3–CaTiO3 system ceramics. J Wuhan Univ Technol-Mater Sci 19:62–64CrossRef
10.
Zurück zum Zitat Wang Y, Zuo R, Zhang J (2015) Sintering behavior and microwave dielectric properties of Li2O–B2O3–SiO2 doped MgTiO3–CaTiO3 ceramics. J Mater Sci Mater Electron 26:1–6 Wang Y, Zuo R, Zhang J (2015) Sintering behavior and microwave dielectric properties of Li2O–B2O3–SiO2 doped MgTiO3–CaTiO3 ceramics. J Mater Sci Mater Electron 26:1–6
11.
Zurück zum Zitat Huang JB, Yang B, Yu CY, Zhang GF, Xue H, Xiong ZX, Viola G, Donnan R, Yan HX, Reece MJ (2015) Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics. Mater Lett 138:225–227CrossRef Huang JB, Yang B, Yu CY, Zhang GF, Xue H, Xiong ZX, Viola G, Donnan R, Yan HX, Reece MJ (2015) Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics. Mater Lett 138:225–227CrossRef
12.
Zurück zum Zitat Wang S, Gu J, Han J, Zhang W (2015) Terahertz dielectric properties of MgO–TiO2–ZnO based ceramics. In: IEEE IRMMW-THz 2015 conference, 2015, pp 1–2 Wang S, Gu J, Han J, Zhang W (2015) Terahertz dielectric properties of MgO–TiO2–ZnO based ceramics. In: IEEE IRMMW-THz 2015 conference, 2015, pp 1–2
13.
Zurück zum Zitat Hong JT, Park DJ, Yim JH, Park JK, Park JY, Lee S, Ahn YH (2013) Dielectric constant engineering of gingle-walled carbon nanotube films for metamaterials and plasmonic devices. J Phys Chem Lett 4:3950–3957CrossRef Hong JT, Park DJ, Yim JH, Park JK, Park JY, Lee S, Ahn YH (2013) Dielectric constant engineering of gingle-walled carbon nanotube films for metamaterials and plasmonic devices. J Phys Chem Lett 4:3950–3957CrossRef
14.
Zurück zum Zitat Benech P, Duchamp JM (2015) Piezoelectric materials and their applications in radio frequency domain and telecommunications. Adv Appl Ceram 114:220–225CrossRef Benech P, Duchamp JM (2015) Piezoelectric materials and their applications in radio frequency domain and telecommunications. Adv Appl Ceram 114:220–225CrossRef
15.
Zurück zum Zitat Platt SR, Farritor S, Haider H (2005) On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans Mechatron 10:240–252CrossRef Platt SR, Farritor S, Haider H (2005) On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans Mechatron 10:240–252CrossRef
16.
Zurück zum Zitat Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nat Mater 1:26–33CrossRef Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nat Mater 1:26–33CrossRef
17.
Zurück zum Zitat McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS (2012) Terahertz spectroscopy: a powerful new tool for the chemical sciences. Chem Soc Rev 41:2072–2082CrossRef McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS (2012) Terahertz spectroscopy: a powerful new tool for the chemical sciences. Chem Soc Rev 41:2072–2082CrossRef
18.
Zurück zum Zitat Son J-H (2009) Terahertz electromagnetic interactions with biological matter and their applications. J Appl Phys 105:102033CrossRef Son J-H (2009) Terahertz electromagnetic interactions with biological matter and their applications. J Appl Phys 105:102033CrossRef
19.
Zurück zum Zitat Weightman P (2012) Prospects for the study of biological systems with high power sources of terahertz radiation. Phys Biol 9:053001CrossRef Weightman P (2012) Prospects for the study of biological systems with high power sources of terahertz radiation. Phys Biol 9:053001CrossRef
20.
Zurück zum Zitat Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A et al (2013) Wireless sub-THz communication system with high data rate. Nat Photonics 7:977–981CrossRef Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A et al (2013) Wireless sub-THz communication system with high data rate. Nat Photonics 7:977–981CrossRef
21.
Zurück zum Zitat Wang J, Shuang Wang R, Singh WZ (2013) Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chin Opt Lett 11:36–40 Wang J, Shuang Wang R, Singh WZ (2013) Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chin Opt Lett 11:36–40
22.
Zurück zum Zitat Zeng X, Xiaojian F, Xi X, Wang D, Zhou J, Li B (2016) Thermodynamics of spin reorientations in TmFeO3 ceramics observed with terahertz time domain spectroscopy. Mater Lett 164:64–67CrossRef Zeng X, Xiaojian F, Xi X, Wang D, Zhou J, Li B (2016) Thermodynamics of spin reorientations in TmFeO3 ceramics observed with terahertz time domain spectroscopy. Mater Lett 164:64–67CrossRef
23.
Zurück zum Zitat Clark BM, Sundaram SK (2016) Terahertz time-domain spectroscopy for in situ monitoring of ceramic nuclear waste forms. J Infrared Milli Terahz Waves 37:993–1000CrossRef Clark BM, Sundaram SK (2016) Terahertz time-domain spectroscopy for in situ monitoring of ceramic nuclear waste forms. J Infrared Milli Terahz Waves 37:993–1000CrossRef
24.
Zurück zum Zitat Xiaojian F, Zeng X, Zhang HC, Cui TJ (2016) Terahertz magnetic response and high dielectric constant in Ti: SmFeO3 composite ceramics. Mater Lett 166:235–238CrossRef Xiaojian F, Zeng X, Zhang HC, Cui TJ (2016) Terahertz magnetic response and high dielectric constant in Ti: SmFeO3 composite ceramics. Mater Lett 166:235–238CrossRef
25.
Zurück zum Zitat Ren J, Li L, Zhang D, Qiao X, Lv Q, Cao G (2016) Study on intelligent recognition detection technology of debond defects for ceramic matrix composites based on terahertz time domain spectroscopy. Appl Opt 55(26):7204–7211CrossRef Ren J, Li L, Zhang D, Qiao X, Lv Q, Cao G (2016) Study on intelligent recognition detection technology of debond defects for ceramic matrix composites based on terahertz time domain spectroscopy. Appl Opt 55(26):7204–7211CrossRef
26.
Zurück zum Zitat Xiaojian F, XinxiZeng DW, Zhang H, Han J, Cui TJ (2015) Ultra low temperature terahertz magnetic thermodynamics of perovskite- like SmFeO3 ceramic. Sci Rep 5:14777CrossRef Xiaojian F, XinxiZeng DW, Zhang H, Han J, Cui TJ (2015) Ultra low temperature terahertz magnetic thermodynamics of perovskite- like SmFeO3 ceramic. Sci Rep 5:14777CrossRef
27.
Zurück zum Zitat Yang X, Chahal PP (2015) On-Wafer Terahertz ribbon waveguides using polymer-ceramic nanocomposites. IEEE Trans Compon Packag Manuf Technol 5(2):245–255CrossRef Yang X, Chahal PP (2015) On-Wafer Terahertz ribbon waveguides using polymer-ceramic nanocomposites. IEEE Trans Compon Packag Manuf Technol 5(2):245–255CrossRef
28.
Zurück zum Zitat Lee Y, Xuesong L, Hao Y, Yang S, Ubic R, Evans Julian R G, Parini CG (2007) Rapid prototyping of ceramic millimeterwave metamaterials: simulations and experiments. Microw Opt Techn Lett 49(9):2090–2093CrossRef Lee Y, Xuesong L, Hao Y, Yang S, Ubic R, Evans Julian R G, Parini CG (2007) Rapid prototyping of ceramic millimeterwave metamaterials: simulations and experiments. Microw Opt Techn Lett 49(9):2090–2093CrossRef
29.
Zurück zum Zitat Ree M, Chen K, Kirby DP, Katzenellenbogen N, Grischkowsky D (1992) Anisotropic properties of high-temperature polyimide thin films: dielectric and thermal-expansion behaviors. J Appl Phys 72(5):2014–2021CrossRef Ree M, Chen K, Kirby DP, Katzenellenbogen N, Grischkowsky D (1992) Anisotropic properties of high-temperature polyimide thin films: dielectric and thermal-expansion behaviors. J Appl Phys 72(5):2014–2021CrossRef
30.
Zurück zum Zitat Sandoval ML, Camerucci MA, Tomba AG (2012) Martinez. High-temperature mechanical behavior of cordierite-based porous ceramics prepared by modified cassava starch thermogelation. J Mater Sci 47:8013–8021. doi:10.1007/s10853-012-6691-9 CrossRef Sandoval ML, Camerucci MA, Tomba AG (2012) Martinez. High-temperature mechanical behavior of cordierite-based porous ceramics prepared by modified cassava starch thermogelation. J Mater Sci 47:8013–8021. doi:10.​1007/​s10853-012-6691-9 CrossRef
31.
Zurück zum Zitat Gong G-L, Huang Y-Y, Liu L-L, Chen X-F, Liu H (2015) Enhanced production of epothilone by immobilized sorangium cellulosum in porous ceramics. J Microbiol Biotechnol 25(10):1653–1659CrossRef Gong G-L, Huang Y-Y, Liu L-L, Chen X-F, Liu H (2015) Enhanced production of epothilone by immobilized sorangium cellulosum in porous ceramics. J Microbiol Biotechnol 25(10):1653–1659CrossRef
32.
Zurück zum Zitat Yumei W, Li Lingxia W, Xiawan LM, Li Yu (2004) Microwave dielectric properties of ceramics based on (Zn1 − xMgx)TiO3 system. J Chin Ceram Soc 32(8):911–915 Yumei W, Li Lingxia W, Xiawan LM, Li Yu (2004) Microwave dielectric properties of ceramics based on (Zn1 − xMgx)TiO3 system. J Chin Ceram Soc 32(8):911–915
33.
Zurück zum Zitat He K, Hong RY, Feng WG, Badami D (2013) A facile co-precipitation synthesis of hexagonal (Zn, Mg)TiO3. Powder Technol 239(17):518–524CrossRef He K, Hong RY, Feng WG, Badami D (2013) A facile co-precipitation synthesis of hexagonal (Zn, Mg)TiO3. Powder Technol 239(17):518–524CrossRef
34.
Zurück zum Zitat Bressiani JC, Izhevskyi V, Bressiani AHA (1999) Development of the microstructure of the silicon nitride based ceramics. Mater Res 2:165–172CrossRef Bressiani JC, Izhevskyi V, Bressiani AHA (1999) Development of the microstructure of the silicon nitride based ceramics. Mater Res 2:165–172CrossRef
35.
Zurück zum Zitat Wei Y-F, Kao C-H, Yang C-F, Huang H-H, Huang C-J (2007) The crystal structures and dielectric properties of Bi2O3 doped SrBi2Ta2O9 ceramics. Mater Lett 61:4643–4646CrossRef Wei Y-F, Kao C-H, Yang C-F, Huang H-H, Huang C-J (2007) The crystal structures and dielectric properties of Bi2O3 doped SrBi2Ta2O9 ceramics. Mater Lett 61:4643–4646CrossRef
36.
Zurück zum Zitat Zhang W, Azad AK, Grischkowsky D (2003) Terahertz studies of carrier dynamics and dielectric response of n-type freestanding epitaxial GaN. Appl Phys Lett 82:2841–2843CrossRef Zhang W, Azad AK, Grischkowsky D (2003) Terahertz studies of carrier dynamics and dielectric response of n-type freestanding epitaxial GaN. Appl Phys Lett 82:2841–2843CrossRef
37.
Zurück zum Zitat Naftaly M, Greenslade PJ, Miles RE, Evans D (2009) Low loss nitride ceramics for terahertz windows. Opt Mater 31:1575–1577CrossRef Naftaly M, Greenslade PJ, Miles RE, Evans D (2009) Low loss nitride ceramics for terahertz windows. Opt Mater 31:1575–1577CrossRef
38.
Zurück zum Zitat Clark BM, Sundaram SK (2016) Terahertz Time-Domain spectroscopy for In situ monitoring ceramics nuclear waste forms. J Infrared Milli Terahz Waves 37:993–1000CrossRef Clark BM, Sundaram SK (2016) Terahertz Time-Domain spectroscopy for In situ monitoring ceramics nuclear waste forms. J Infrared Milli Terahz Waves 37:993–1000CrossRef
39.
Zurück zum Zitat Han J, Woo BK, Chen W, Sang M, Xinchao L, Zhang W (2008) Terahertz dielectric properties of MgO nanocrystals. J Phys Chem C 112:17512–17516CrossRef Han J, Woo BK, Chen W, Sang M, Xinchao L, Zhang W (2008) Terahertz dielectric properties of MgO nanocrystals. J Phys Chem C 112:17512–17516CrossRef
40.
Zurück zum Zitat Grischkowsky D, Keiding S (1990) THz time-domain spectroscopy of high Tc substrates. Appl Phys Lett 57:1055–1057CrossRef Grischkowsky D, Keiding S (1990) THz time-domain spectroscopy of high Tc substrates. Appl Phys Lett 57:1055–1057CrossRef
41.
Zurück zum Zitat Han J, Azad AK, Zhang W (2007) Far-infrared characteristics of bulk and nanostructured wide-band gap semiconductors. J Nanoelectron Optoe. 2:222–223CrossRef Han J, Azad AK, Zhang W (2007) Far-infrared characteristics of bulk and nanostructured wide-band gap semiconductors. J Nanoelectron Optoe. 2:222–223CrossRef
42.
Zurück zum Zitat Robinson DA (2004) Calculation of the dielectric properties of temperate and tropical soil minerals from ion polarizabilities using the clausius–mosotti equation. Soil Sci Soc Am J 68:1780–1785CrossRef Robinson DA (2004) Calculation of the dielectric properties of temperate and tropical soil minerals from ion polarizabilities using the clausius–mosotti equation. Soil Sci Soc Am J 68:1780–1785CrossRef
43.
Zurück zum Zitat Pashkin A, Kamba S, Berta M, Petzelt J, de Gyorgyfalva GC, Zheng H, Bagshaw H, Reaney IM (2005) High frequency dielectric properties of CaTiO3-based microwave ceramics. J Phys D Appl Phys 38:741–748CrossRef Pashkin A, Kamba S, Berta M, Petzelt J, de Gyorgyfalva GC, Zheng H, Bagshaw H, Reaney IM (2005) High frequency dielectric properties of CaTiO3-based microwave ceramics. J Phys D Appl Phys 38:741–748CrossRef
44.
Zurück zum Zitat Helal MA, Mori T, Kojima S (2015) Softening of infrared-active mode of perovskite BaZrO3 proved by terahertz time domain spectroscopy. Appl Phys Lett 106:182904CrossRef Helal MA, Mori T, Kojima S (2015) Softening of infrared-active mode of perovskite BaZrO3 proved by terahertz time domain spectroscopy. Appl Phys Lett 106:182904CrossRef
Metadaten
Titel
Dielectric properties of MgO–ZnO–TiO2-based ceramics at 1 MHz and THz frequencies
verfasst von
Shuang Wang
Quan Li
Jianqiang Gu
Jiaguang Han
Weili Zhang
Publikationsdatum
01.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1138-y

Weitere Artikel der Ausgabe 16/2017

Journal of Materials Science 16/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.