Skip to main content
Erschienen in: Journal of Electronic Materials 9/2022

04.07.2022 | Original Research Article

Dielectric Studies of Nano-Magnesium Silicate and Linear Low-Density Polyethylene Composite As a Substrate for High-Frequency Applications

verfasst von: Pulin Dutta, Kunal Borah

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dielectric properties of a magnesium silicate (MgSiO3) linear low-density polyethylene nanocomposite are studied in the X-band frequencies to realize its application as a substrate for high-frequency devices. MgSiO3 ceramics are synthesized by conventional solid state technique. Structural and morphological characteristics of MgSiO3 nanoparticles are confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Transmission electron microscopy images reveal the average particle size to be ~100 nm. Composites are prepared by uniform dispersion of the nano-inclusions MgSiO3 in a linear low-density polyethylene matrix in three different wt.%, viz. 2%, 4% and 6%. The fractured lateral side of the composite is examined under a scanning electron microscope to ensure the uniform dispersion of the inclusions in the polymer. Water absorption measurement is carried out based on ASTM D570-98. Densities of the samples are measured by hydrostatic weighing by using Archimedes principle. Thermal conductivity of the composites is measured by modified hot plat method. Nicholson-Ross approach is used to investigate the dielectric characteristics of composites. The permittivity and dielectric loss tangent of the nano-composite in the X-band are found to be ~2.2–2.5 and 10−2–10−4 for all the inclusion concentration respectively. To see the applicability of the nanocomposite in the field of antenna, return losses are calculated from complex permittivity and complex permittivity data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.T. Sebastian, R. Ubic, and H. Jantunen, Low-loss Dielectric Ceramic Materials and Their Properties. Int. Mater. Rev. 60, 392 (2015).CrossRef M.T. Sebastian, R. Ubic, and H. Jantunen, Low-loss Dielectric Ceramic Materials and Their Properties. Int. Mater. Rev. 60, 392 (2015).CrossRef
2.
Zurück zum Zitat S. Fu, Z. Sun, P. Huang, Y. Li, and N. Hu, Some Basic Aspects of Polymer Nanocomposites: A Critical Review. Nano Mater. Sci. 1, 2 (2019).CrossRef S. Fu, Z. Sun, P. Huang, Y. Li, and N. Hu, Some Basic Aspects of Polymer Nanocomposites: A Critical Review. Nano Mater. Sci. 1, 2 (2019).CrossRef
3.
Zurück zum Zitat C. Zhang, R. Zuo, J. Zhang, and Y. Wang, Structure-Dependent Microwave Dielectric Properties and Middle Temperature Sintering of Forsterite (Mg1–xNix)2SiO4. J. Am. Ceram. Soc. 98, 3 (2015). C. Zhang, R. Zuo, J. Zhang, and Y. Wang, Structure-Dependent Microwave Dielectric Properties and Middle Temperature Sintering of Forsterite (Mg1–xNix)2SiO4. J. Am. Ceram. Soc. 98, 3 (2015).
4.
Zurück zum Zitat P.S. Anjana, M.T. Sebastian, M.N. Suma, and P. Mohanan, Low Dielectric Loss PTFE/CeO2 Ceramic Composites for Microwave Substrate Applications. Int. J. Appl. Ceram. Technol. 5, 325 (2008).CrossRef P.S. Anjana, M.T. Sebastian, M.N. Suma, and P. Mohanan, Low Dielectric Loss PTFE/CeO2 Ceramic Composites for Microwave Substrate Applications. Int. J. Appl. Ceram. Technol. 5, 325 (2008).CrossRef
5.
Zurück zum Zitat M.H. Ullah, M.T. Islam, M.R. Ahsan, W.N.L. Mahadi, T.A. Latef, and M.J. Uddin, A Low-cost Fiberglass Polymer Resin Dielectric Material-Based Microstrip Patch Antenna for Multiband Applications. Sci. Eng. Compos. Mater. 23, 447 (2016).CrossRef M.H. Ullah, M.T. Islam, M.R. Ahsan, W.N.L. Mahadi, T.A. Latef, and M.J. Uddin, A Low-cost Fiberglass Polymer Resin Dielectric Material-Based Microstrip Patch Antenna for Multiband Applications. Sci. Eng. Compos. Mater. 23, 447 (2016).CrossRef
6.
Zurück zum Zitat V.L. Vilesh and S. Ganesanpotti, Silicone Rubber-BaBiLiTeO6 Composites: Flexible Microwave Substrates for 5G Applications. J. Electron. Mater. 1, 11 (2022). V.L. Vilesh and S. Ganesanpotti, Silicone Rubber-BaBiLiTeO6 Composites: Flexible Microwave Substrates for 5G Applications. J. Electron. Mater. 1, 11 (2022).
7.
Zurück zum Zitat C. Wang, B. Wu, X. Mao, T. Deng, R. Li, Y. Xu, and X. Tang, The Effects of Concentration and Particle Size of TiO2 on the Dielectric Properties of Polyolefin-Based Microwave Substrates. Chem. Select 5, 1464 (2020). C. Wang, B. Wu, X. Mao, T. Deng, R. Li, Y. Xu, and X. Tang, The Effects of Concentration and Particle Size of TiO2 on the Dielectric Properties of Polyolefin-Based Microwave Substrates. Chem. Select 5, 1464 (2020).
8.
Zurück zum Zitat H. Peng, H. Ren, M. Dang, Y. Zhang, Z. Gu, X. Yao, and H. Lin, The dimensional effect of MgTiO3 ceramic filler on the microwave dielectric properties of PTFE/MgTiO3 composite with ultra-low dielectric loss. J. Mater. Sci. Mater. Electron. 30, 6680 (2019).CrossRef H. Peng, H. Ren, M. Dang, Y. Zhang, Z. Gu, X. Yao, and H. Lin, The dimensional effect of MgTiO3 ceramic filler on the microwave dielectric properties of PTFE/MgTiO3 composite with ultra-low dielectric loss. J. Mater. Sci. Mater. Electron. 30, 6680 (2019).CrossRef
9.
Zurück zum Zitat V. Drishya, A.N. Unnimaya, R. Naveenraj, E.K. Suresh, and R. Ratheesh, Preparation, Characterization, and Dielectric Properties of PP/CaTiO3 Composites for Microwave Substrate Applications. J. Appl. Ceram. Technol. 1, 810 (2016).CrossRef V. Drishya, A.N. Unnimaya, R. Naveenraj, E.K. Suresh, and R. Ratheesh, Preparation, Characterization, and Dielectric Properties of PP/CaTiO3 Composites for Microwave Substrate Applications. J. Appl. Ceram. Technol. 1, 810 (2016).CrossRef
10.
Zurück zum Zitat L. Zheng, J. Zhou, J. Shen, W. Chen, Y. Qi, S. Shen, and S. Li, The Dielectric Properties and Dielectric Mechanism of Perovskite Ceramic CLST/PTFE Composites. J. Mater. Sci. Mater. Electron. 28, 11665 (2017).CrossRef L. Zheng, J. Zhou, J. Shen, W. Chen, Y. Qi, S. Shen, and S. Li, The Dielectric Properties and Dielectric Mechanism of Perovskite Ceramic CLST/PTFE Composites. J. Mater. Sci. Mater. Electron. 28, 11665 (2017).CrossRef
11.
Zurück zum Zitat Y. Yuan, Z. Li, L. Cao, B. Tang, and S. Zhang, Modification of Si3N4 Ceramic Powders and Fabrication of Si3N4/PTFE Composite Substrate with High Thermal Conductivity. Ceram. Int. 45, 16569 (2019).CrossRef Y. Yuan, Z. Li, L. Cao, B. Tang, and S. Zhang, Modification of Si3N4 Ceramic Powders and Fabrication of Si3N4/PTFE Composite Substrate with High Thermal Conductivity. Ceram. Int. 45, 16569 (2019).CrossRef
12.
Zurück zum Zitat D. Sarmah, N.S. Bhattacharyya, and S. Bhattacharyya, Study of Graded Composite (LDPE/TIO2) Materials as Substrate for Microstrip Patch Antennas in X-band. IEEE Trans. Dielectr. Electr. Insul. 20, 1845 (2013).CrossRef D. Sarmah, N.S. Bhattacharyya, and S. Bhattacharyya, Study of Graded Composite (LDPE/TIO2) Materials as Substrate for Microstrip Patch Antennas in X-band. IEEE Trans. Dielectr. Electr. Insul. 20, 1845 (2013).CrossRef
13.
Zurück zum Zitat H.C. Pant, M.K. Patra, A. Verma, S.R. Vadera, and N. Kumar, Study of the Dielectric Properties of Barium Titanate-Polymer Composites. Acta Mater. 54, 3163 (2006).CrossRef H.C. Pant, M.K. Patra, A. Verma, S.R. Vadera, and N. Kumar, Study of the Dielectric Properties of Barium Titanate-Polymer Composites. Acta Mater. 54, 3163 (2006).CrossRef
14.
Zurück zum Zitat A. Hoorfar and A. Perrotta, An Experimental Study of Microstrip Antennas on Very High Permittivity Ceramic Substrates and Very Small Ground Planes. IEEE Trans. Antennas Propag. 49, 838 (2001).CrossRef A. Hoorfar and A. Perrotta, An Experimental Study of Microstrip Antennas on Very High Permittivity Ceramic Substrates and Very Small Ground Planes. IEEE Trans. Antennas Propag. 49, 838 (2001).CrossRef
15.
Zurück zum Zitat M.H. Ullah and M.T. Islam, Design of a Modified W-shaped Patch Antenna on Al2O3 Ceramic Material Substrate for Ka-Band. Chalcogenide Lett. 9, 61 (2012). M.H. Ullah and M.T. Islam, Design of a Modified W-shaped Patch Antenna on Al2O3 Ceramic Material Substrate for Ka-Band. Chalcogenide Lett. 9, 61 (2012).
16.
Zurück zum Zitat M.H. Ullah and M.T. Islam, Miniaturized Modified Circular Patch Monopole Antenna on Ceramic-Polytetrafluroethylene Composite Material Substrate. J. Comput. Electron. 13, 211 (2014).CrossRef M.H. Ullah and M.T. Islam, Miniaturized Modified Circular Patch Monopole Antenna on Ceramic-Polytetrafluroethylene Composite Material Substrate. J. Comput. Electron. 13, 211 (2014).CrossRef
17.
Zurück zum Zitat D.D. Sandu, O. Avadanei, A. Ioachima, G. Banciua, and P. Gasner, Microstrip Patch Antenna With Dielectric Substrate. J. Optoelectron. Adv. Mater. 5, 1381 (2003). D.D. Sandu, O. Avadanei, A. Ioachima, G. Banciua, and P. Gasner, Microstrip Patch Antenna With Dielectric Substrate. J. Optoelectron. Adv. Mater. 5, 1381 (2003).
18.
Zurück zum Zitat J.A.L. Matias, I.B.T. Silva, M.E.T. Sousa, J.B.L. Oliveira, M.A. Morales, and D.R. da Silva, (Bi13Co11)Co2O40-Co3O4 Nanocomposites: Synthesis, Characterization and Application as Substrate for Microstrip Patch Antenna. Ceram. Int. 47, 21530 (2021).CrossRef J.A.L. Matias, I.B.T. Silva, M.E.T. Sousa, J.B.L. Oliveira, M.A. Morales, and D.R. da Silva, (Bi13Co11)Co2O40-Co3O4 Nanocomposites: Synthesis, Characterization and Application as Substrate for Microstrip Patch Antenna. Ceram. Int. 47, 21530 (2021).CrossRef
19.
Zurück zum Zitat P.J. Gogoi, S. Bhattacharyya, and N.S. Bhattacharyya, Linear Low Density Polyethylene (LLDPE) as Flexible Substrate for Wrist and Arm Antennas in C-Band. J. Electron. Mater. 44, 1071 (2015).CrossRef P.J. Gogoi, S. Bhattacharyya, and N.S. Bhattacharyya, Linear Low Density Polyethylene (LLDPE) as Flexible Substrate for Wrist and Arm Antennas in C-Band. J. Electron. Mater. 44, 1071 (2015).CrossRef
20.
Zurück zum Zitat K.S. Chun, S. Husseinsyah, and N.F. Syazwani, Properties of Kapok Husk-Filled Linear Low-Density Polyethylene Eco Composites: Effect of Polyethylene-Grafted Acrylic Acid. J. Thermoplast. Compos. Mater. 29, 1641 (2016).CrossRef K.S. Chun, S. Husseinsyah, and N.F. Syazwani, Properties of Kapok Husk-Filled Linear Low-Density Polyethylene Eco Composites: Effect of Polyethylene-Grafted Acrylic Acid. J. Thermoplast. Compos. Mater. 29, 1641 (2016).CrossRef
21.
Zurück zum Zitat J. He, H. Ye, S. Liu, and J. Zhao, Preparation and Properties of LLDPE/PMVS Blends. Polym. Polym. Compos. 14, 611 (2006). J. He, H. Ye, S. Liu, and J. Zhao, Preparation and Properties of LLDPE/PMVS Blends. Polym. Polym. Compos. 14, 611 (2006).
22.
Zurück zum Zitat M. Shafiq, T. Yasin, and S. Saeed, Synthesis and Characterization of Linear Low-Density Polyethylene/Sepiolite Nanocomposites. J. Appl. Polym. Sci. 123, 1718 (2012).CrossRef M. Shafiq, T. Yasin, and S. Saeed, Synthesis and Characterization of Linear Low-Density Polyethylene/Sepiolite Nanocomposites. J. Appl. Polym. Sci. 123, 1718 (2012).CrossRef
23.
Zurück zum Zitat M.E. Song, J.S. Kim, M.R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. J. Am. Ceram. Soc. 91, 2747 (2008).CrossRef M.E. Song, J.S. Kim, M.R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. J. Am. Ceram. Soc. 91, 2747 (2008).CrossRef
24.
Zurück zum Zitat P. Dutta, B. Saikia, P.R. Alapati, and K. Borah, Linear Low-Density Polyethylene-Thermotropic Liquid Crystal Composite Substrate for High Frequency Devices: Dielectric Characterization. J. Electron. Mater. 50, 1434 (2021).CrossRef P. Dutta, B. Saikia, P.R. Alapati, and K. Borah, Linear Low-Density Polyethylene-Thermotropic Liquid Crystal Composite Substrate for High Frequency Devices: Dielectric Characterization. J. Electron. Mater. 50, 1434 (2021).CrossRef
25.
Zurück zum Zitat N.S.B.M. Hafidz, M.S.B.M. Rehan, and H.B. Mokhtar, Effect of Alkaline Treatment on Water Absorption and Thickness Swelling of Natural Fibre Reinforced Unsaturated Polyester Composites. Mater. Today Proc. 48, 720 (2022).CrossRef N.S.B.M. Hafidz, M.S.B.M. Rehan, and H.B. Mokhtar, Effect of Alkaline Treatment on Water Absorption and Thickness Swelling of Natural Fibre Reinforced Unsaturated Polyester Composites. Mater. Today Proc. 48, 720 (2022).CrossRef
26.
Zurück zum Zitat J.J. Bensch and H.J. Brynard, New Approach to Density Measurements Using Archimedes’s Principle. Nat. Phys. Sci. 239, 96 (1972).CrossRef J.J. Bensch and H.J. Brynard, New Approach to Density Measurements Using Archimedes’s Principle. Nat. Phys. Sci. 239, 96 (1972).CrossRef
27.
Zurück zum Zitat M.G. Gomes, I. Flores-Colen, F. Da Silva, and M. Pedroso, Thermal Conductivity Measurement of Thermal Insulating Mortars with EPS and Silica Aerogel by Steady-State and Transient Methods. Constr. Build. Mater. 172, 696 (2018).CrossRef M.G. Gomes, I. Flores-Colen, F. Da Silva, and M. Pedroso, Thermal Conductivity Measurement of Thermal Insulating Mortars with EPS and Silica Aerogel by Steady-State and Transient Methods. Constr. Build. Mater. 172, 696 (2018).CrossRef
28.
Zurück zum Zitat S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, and M.T. Sebastian, Preparation, Characterization and Properties of Sm2Si2O7 Loaded Polymer Composites for Microelectronic Applications. Mater. Sci. Eng. B 163, 67 (2009).CrossRef S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, and M.T. Sebastian, Preparation, Characterization and Properties of Sm2Si2O7 Loaded Polymer Composites for Microelectronic Applications. Mater. Sci. Eng. B 163, 67 (2009).CrossRef
29.
Zurück zum Zitat A.M. Nicolson and G.F. Ross, Measurement of the Intrinsic Properties of Materials by Time Domain Techniques. IEEE Trans. Instrum. Meas. 19, 377 (1970).CrossRef A.M. Nicolson and G.F. Ross, Measurement of the Intrinsic Properties of Materials by Time Domain Techniques. IEEE Trans. Instrum. Meas. 19, 377 (1970).CrossRef
30.
Zurück zum Zitat G.F. Engen and C.A. Hoer, Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer. IEEE Trans. Microw. Theory Technol. 27, 987 (1979).CrossRef G.F. Engen and C.A. Hoer, Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer. IEEE Trans. Microw. Theory Technol. 27, 987 (1979).CrossRef
31.
Zurück zum Zitat S. Ozah and N.S. Bhattacharyya, Nanosized Barium Hexaferrite in Novolac Phenolic Resin as Microwave Absorber for X-band Application. J. Magn. Magn. Mater. 342, 92 (2013).CrossRef S. Ozah and N.S. Bhattacharyya, Nanosized Barium Hexaferrite in Novolac Phenolic Resin as Microwave Absorber for X-band Application. J. Magn. Magn. Mater. 342, 92 (2013).CrossRef
32.
Zurück zum Zitat A.F. Ahmad, Z. Abbas, S.J. Obaiys, and D.M. Abdalhadi, Improvement of Dielectric, Magnetic and Thermal Properties of OPEFB Fibre-Polycaprolactone Composite by Adding Ni-Zn Ferrite Polymers. Polymers 9, 12 (2017).CrossRef A.F. Ahmad, Z. Abbas, S.J. Obaiys, and D.M. Abdalhadi, Improvement of Dielectric, Magnetic and Thermal Properties of OPEFB Fibre-Polycaprolactone Composite by Adding Ni-Zn Ferrite Polymers. Polymers 9, 12 (2017).CrossRef
33.
Zurück zum Zitat T. Karpisz, B. Salski, P. Kopyt, and J. Krupka, Measurement of Dielectrics from 20 to 50 GHz with a Fabry-Pérot Open Resonator. IEEE Trans. Microw. Theory Tech. 67, 1901 (2019).CrossRef T. Karpisz, B. Salski, P. Kopyt, and J. Krupka, Measurement of Dielectrics from 20 to 50 GHz with a Fabry-Pérot Open Resonator. IEEE Trans. Microw. Theory Tech. 67, 1901 (2019).CrossRef
34.
Zurück zum Zitat K.L. Zhang, Z.L. Hou, L.B. Kong, H.M. Fang, and K.T. Zhan, Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials Chin. Phys. Lett. 34, 097701 (2017). K.L. Zhang, Z.L. Hou, L.B. Kong, H.M. Fang, and K.T. Zhan, Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials Chin. Phys. Lett. 34, 097701 (2017).
35.
Zurück zum Zitat E. Axelrod, A. Puzenko, Y. Haruvy, R. Reisfeld, and Y. Feldman, Negative Dielectric Loss Phenomenon in Porous Sol-Gel Glasses. J. Non-Cryst. Solids 352, 4166 (2006).CrossRef E. Axelrod, A. Puzenko, Y. Haruvy, R. Reisfeld, and Y. Feldman, Negative Dielectric Loss Phenomenon in Porous Sol-Gel Glasses. J. Non-Cryst. Solids 352, 4166 (2006).CrossRef
36.
Zurück zum Zitat R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Carbon Encapsulated Nanoscale Iron/Iron-Carbide/Graphite Particles for EMI Shielding and Microwave Absorption. Phys. Chem. Chem. Phys. 19, 23268 (2017).CrossRef R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Carbon Encapsulated Nanoscale Iron/Iron-Carbide/Graphite Particles for EMI Shielding and Microwave Absorption. Phys. Chem. Chem. Phys. 19, 23268 (2017).CrossRef
37.
Zurück zum Zitat H.K. Choudhary and B. Sahoo, Microwave Absorption Property of Hydrothermal Synthesized RGO/PbFe12O19 Nano Composite. J. Converg. Technol. 3, 918 (2017). H.K. Choudhary and B. Sahoo, Microwave Absorption Property of Hydrothermal Synthesized RGO/PbFe12O19 Nano Composite. J. Converg. Technol. 3, 918 (2017).
38.
Zurück zum Zitat X. Huang and C. Zhi, Polymer Nano Composite: Electrical and Thermal Properties (Berlin: Spinger, 2016), pp. 17–18. X. Huang and C. Zhi, Polymer Nano Composite: Electrical and Thermal Properties (Berlin: Spinger, 2016), pp. 17–18.
Metadaten
Titel
Dielectric Studies of Nano-Magnesium Silicate and Linear Low-Density Polyethylene Composite As a Substrate for High-Frequency Applications
verfasst von
Pulin Dutta
Kunal Borah
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09775-5

Weitere Artikel der Ausgabe 9/2022

Journal of Electronic Materials 9/2022 Zur Ausgabe

Neuer Inhalt