Skip to main content

2019 | OriginalPaper | Buchkapitel

Differential Evolution in PFCM Clustering for Energy Efficient Cooperative Spectrum Sensing

verfasst von : Anal Paul, Santi P. Maity

Erschienen in: Advances in Intelligent Computing

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cooperative spectrum sensing (CSS) in cognitive radio network (CRN) is highly recommended to avoid the interference from secondary users (SUs) to primary user (PU). Several studies report that clustering-based CSS technique improves the system performance, among them fuzzy c-means (FCM) clustering algorithm is widely explored. However, it is observed that FCM generates an improper clustering of sensing information at low signal-to-noise ratio (SNR) due to inseparable nature of energy data set. To address this problem, the present chapter describes a work that investigates the scope of possibilistic fuzzy c-means (PFCM) algorithm on energy detection-based CSS. PFCM integrates the possibilistic information and fuzzy membership values of input data in the clustering process to segregate the indistinguishable energy data into the respective clusters. Differential evolution (DE) algorithm is applied with PFCM to maximize the probability of PU detection (\(P_D\)) under the constraint of a target false alarm probability (\(P_{fa}\)). The present work also evaluates the required power consumption during CSS by SUs. The proposed technique improves \(P_D\) by \(\sim \!12.53\%\) and decreases average energy consumption by \(\sim \!5.34\%\) over the existing work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Federal Communications Commission: Spectrum policy task force, Rep. ET Docket no. 02-135 (2002) Federal Communications Commission: Spectrum policy task force, Rep. ET Docket no. 02-135 (2002)
2.
Zurück zum Zitat OFCOM: Digital Dividend Review. A statement on our approach towards awarding the digital dividend (2007) OFCOM: Digital Dividend Review. A statement on our approach towards awarding the digital dividend (2007)
3.
Zurück zum Zitat Mitola, J.: Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation, Computer Communication System Laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000 Mitola, J.: Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation, Computer Communication System Laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000
4.
Zurück zum Zitat Haykin, S., Setoodeh, P.: Cognitive radio networks: the spectrum supply chain paradigm. IEEE Trans. Cognit. Commun. Netw. 1(1), 3–28 (2015)CrossRef Haykin, S., Setoodeh, P.: Cognitive radio networks: the spectrum supply chain paradigm. IEEE Trans. Cognit. Commun. Netw. 1(1), 3–28 (2015)CrossRef
5.
Zurück zum Zitat Banerjee, A., Paul, A., Maity, S.P.: Joint power allocation and route selection for outage minimization in multihop cognitive radio networks with energy harvesting. IEEE Trans. Cognit. Commun. Netw. 4(1), 82–92 (2018)CrossRef Banerjee, A., Paul, A., Maity, S.P.: Joint power allocation and route selection for outage minimization in multihop cognitive radio networks with energy harvesting. IEEE Trans. Cognit. Commun. Netw. 4(1), 82–92 (2018)CrossRef
6.
Zurück zum Zitat Paul, A., Maity, S.P.: On outage minimization in cognitive radio networks through routing and power control. Wirel. Pers. Commun. 98(1), 251–269 (2018)CrossRef Paul, A., Maity, S.P.: On outage minimization in cognitive radio networks through routing and power control. Wirel. Pers. Commun. 98(1), 251–269 (2018)CrossRef
7.
Zurück zum Zitat Bhatti, D.M.S., Nam, H.: Spatial correlation based analysis of soft combination and user selection algorithm for cooperative spectrum sensing. IET Commun. 11(1), 39–44 (2017)CrossRef Bhatti, D.M.S., Nam, H.: Spatial correlation based analysis of soft combination and user selection algorithm for cooperative spectrum sensing. IET Commun. 11(1), 39–44 (2017)CrossRef
8.
Zurück zum Zitat Banerjee, A., Maity, S.P.: On optimal sample checkpoint for energy efficient cooperative spectrum sensing. Digit. Signal Process. 74, 56–71 (2018)MathSciNetCrossRef Banerjee, A., Maity, S.P.: On optimal sample checkpoint for energy efficient cooperative spectrum sensing. Digit. Signal Process. 74, 56–71 (2018)MathSciNetCrossRef
9.
Zurück zum Zitat Sobron, I., Diniz, P., Martins, W., Velez, M.: Energy detection technique for adaptive spectrum sensing. IEEE Trans. Commun. 63(3), 617–627 (2015)CrossRef Sobron, I., Diniz, P., Martins, W., Velez, M.: Energy detection technique for adaptive spectrum sensing. IEEE Trans. Commun. 63(3), 617–627 (2015)CrossRef
10.
Zurück zum Zitat Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009)CrossRef Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009)CrossRef
11.
Zurück zum Zitat Mingchuan, Y., Yuan, L., Xiaofeng, L., Wenyan, T.: Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks. China Commun. 12(9), 35–44 (2015)CrossRef Mingchuan, Y., Yuan, L., Xiaofeng, L., Wenyan, T.: Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks. China Commun. 12(9), 35–44 (2015)CrossRef
12.
Zurück zum Zitat Xinzhi, Z., Feifei, G., Rong, C., Tao, J.: Matched filter based spectrum sensing when primary user has multiple power levels. China Commun. 12(2), 21–31 (2015)CrossRef Xinzhi, Z., Feifei, G., Rong, C., Tao, J.: Matched filter based spectrum sensing when primary user has multiple power levels. China Commun. 12(2), 21–31 (2015)CrossRef
13.
Zurück zum Zitat Zeng, Y., Liang, Y.C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)CrossRef Zeng, Y., Liang, Y.C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)CrossRef
14.
Zurück zum Zitat Zhang, Y., Zhang, Q., Wu, S.: Entropy-based robust spectrum sensing in cognitive radio. IET Commun. 4(4), 428–436 (2010)CrossRef Zhang, Y., Zhang, Q., Wu, S.: Entropy-based robust spectrum sensing in cognitive radio. IET Commun. 4(4), 428–436 (2010)CrossRef
15.
Zurück zum Zitat Xu, Y.L., Zhang, H.S., Han, Z.H.: The performance analysis of spectrum sensing algorithms based on wavelet edge detection. In: Proceeding of 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), pp. 1–4 (2009) Xu, Y.L., Zhang, H.S., Han, Z.H.: The performance analysis of spectrum sensing algorithms based on wavelet edge detection. In: Proceeding of 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), pp. 1–4 (2009)
16.
Zurück zum Zitat Sedighi, S., Taherpour, A., Monfared, S.: Bayesian generalised likelihood ratio test-based multiple antenna spectrum sensing for cognitive radios. IET Commun. 7(18), 2151–2165 (2013)CrossRef Sedighi, S., Taherpour, A., Monfared, S.: Bayesian generalised likelihood ratio test-based multiple antenna spectrum sensing for cognitive radios. IET Commun. 7(18), 2151–2165 (2013)CrossRef
17.
Zurück zum Zitat Sun, W., Huang, Z., Wang, F., Wang, X.: Compressive wideband spectrum sensing based on single channel. Electron. Lett. 51(9), 693–695 (2015)CrossRef Sun, W., Huang, Z., Wang, F., Wang, X.: Compressive wideband spectrum sensing based on single channel. Electron. Lett. 51(9), 693–695 (2015)CrossRef
18.
Zurück zum Zitat Jaglan, R.R., Sarowa, S., Mustafa, R., Agrawal, S., Kumar, N.: Comparative study of single-user spectrum sensing techniques in cognitive radio networks. Procedia Comput. Sci. 58, 121–128 (2015)CrossRef Jaglan, R.R., Sarowa, S., Mustafa, R., Agrawal, S., Kumar, N.: Comparative study of single-user spectrum sensing techniques in cognitive radio networks. Procedia Comput. Sci. 58, 121–128 (2015)CrossRef
19.
Zurück zum Zitat Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)CrossRef Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)CrossRef
20.
Zurück zum Zitat Bhargavi, D., Murthy, C.: Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: Proceeding IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp.1–5 (2010) Bhargavi, D., Murthy, C.: Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: Proceeding IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp.1–5 (2010)
21.
Zurück zum Zitat So, J.: Energy-efficient cooperative spectrum sensing with a logical multi-bit combination rule. IEEE Commun. Lett. 20(12), 2538–2541 (2016)CrossRef So, J.: Energy-efficient cooperative spectrum sensing with a logical multi-bit combination rule. IEEE Commun. Lett. 20(12), 2538–2541 (2016)CrossRef
22.
Zurück zum Zitat Awin, F.A., Abdel-Raheem, E., Ahmadi, M.: Designing an optimal energy efficient cluster-based spectrum sensing for cognitive radio networks. IEEE Commun. Lett. 20(9), 1884–1887 (2016)CrossRef Awin, F.A., Abdel-Raheem, E., Ahmadi, M.: Designing an optimal energy efficient cluster-based spectrum sensing for cognitive radio networks. IEEE Commun. Lett. 20(9), 1884–1887 (2016)CrossRef
23.
Zurück zum Zitat Cichoń, K., Kliks, A., Bogucka, H.: Energy-efficient cooperative spectrum sensing: A survey. IEEE Commun. Surv. Tutor. 18(3), 1861–1886CrossRef Cichoń, K., Kliks, A., Bogucka, H.: Energy-efficient cooperative spectrum sensing: A survey. IEEE Commun. Surv. Tutor. 18(3), 1861–1886CrossRef
24.
Zurück zum Zitat Jiao, Y., Yin, P., Joe, I.: Clustering scheme for cooperative spectrum sensing in cognitive radio networks. IET Commun. 10(13), 1590–1595 (2016)CrossRef Jiao, Y., Yin, P., Joe, I.: Clustering scheme for cooperative spectrum sensing in cognitive radio networks. IET Commun. 10(13), 1590–1595 (2016)CrossRef
25.
Zurück zum Zitat Paul, A., Maity, S.P.: Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing. Digital Commun. Netw. 2(4), 196–205 (2016)CrossRef Paul, A., Maity, S.P.: Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing. Digital Commun. Netw. 2(4), 196–205 (2016)CrossRef
26.
Zurück zum Zitat Maity, S.P., Chatterjee, S., Acharya, T.: On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Process. 49(C), 104–115CrossRef Maity, S.P., Chatterjee, S., Acharya, T.: On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Process. 49(C), 104–115CrossRef
27.
Zurück zum Zitat Huang, S., Chen, H., Zhang, Y., Zhao, F.: Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Commun. Lett. 16(4), 450–453 (2012)CrossRef Huang, S., Chen, H., Zhang, Y., Zhao, F.: Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Commun. Lett. 16(4), 450–453 (2012)CrossRef
28.
Zurück zum Zitat Chatterjee, S., Banerjee, A., Acharya, T., Maity, S.P.: Fuzzy c-means clustering in energy detection for cooperative spectrum sensing in cognitive radio system. Proc. Mult. Access Commun. 8715, 84–95 (2014) Chatterjee, S., Banerjee, A., Acharya, T., Maity, S.P.: Fuzzy c-means clustering in energy detection for cooperative spectrum sensing in cognitive radio system. Proc. Mult. Access Commun. 8715, 84–95 (2014)
29.
Zurück zum Zitat Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering : A comparative experimental study. Fuzzy Sets Syst. 161(4), 522–543 (2010)MathSciNetCrossRef Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering : A comparative experimental study. Fuzzy Sets Syst. 161(4), 522–543 (2010)MathSciNetCrossRef
30.
Zurück zum Zitat Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York, NY, USA (2004)CrossRefMATH Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York, NY, USA (2004)CrossRefMATH
31.
Zurück zum Zitat Zhao, X., Zhang, S.: In: An Improved KFCM Algorithm Based on Artificial Bee Colony, pp. 190–198. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011) Zhao, X., Zhang, S.: In: An Improved KFCM Algorithm Based on Artificial Bee Colony, pp. 190–198. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)
32.
Zurück zum Zitat Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13(4), 517–530 (2005)CrossRef Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13(4), 517–530 (2005)CrossRef
33.
Zurück zum Zitat Shang, R., Tian, P., Wen, A., Liu, W., Jiao, L.: An intuitionistic fuzzy possibilistic c-means clustering based on genetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), July 2016, pp. 941–947 Shang, R., Tian, P., Wen, A., Liu, W., Jiao, L.: An intuitionistic fuzzy possibilistic c-means clustering based on genetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), July 2016, pp. 941–947
34.
Zurück zum Zitat Paul, A., Maity, S.P.: On energy efficient cooperative spectrum sensing using possibilistic fuzzy c-means clustering. In: Intelligence, Computational (ed.) Communications, and Business Analytics, pp. 382–396. Springer Singapore, Singapore (2017) Paul, A., Maity, S.P.: On energy efficient cooperative spectrum sensing using possibilistic fuzzy c-means clustering. In: Intelligence, Computational (ed.) Communications, and Business Analytics, pp. 382–396. Springer Singapore, Singapore (2017)
35.
Zurück zum Zitat Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)CrossRef Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)CrossRef
36.
Zurück zum Zitat Wang, J., Zhang, W., Zhang, J.: Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans. Cybern. 46(12), 2848–2861 (2016)CrossRef Wang, J., Zhang, W., Zhang, J.: Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans. Cybern. 46(12), 2848–2861 (2016)CrossRef
37.
Zurück zum Zitat Saha, A., Konar, A., Rakshit, P., Ralescu, A.L., Nagar, A.K.: Olfaction recognition by eeg analysis using differential evolution induced hopfield neural net. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), August 2013, pp. 1–8 Saha, A., Konar, A., Rakshit, P., Ralescu, A.L., Nagar, A.K.: Olfaction recognition by eeg analysis using differential evolution induced hopfield neural net. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), August 2013, pp. 1–8
38.
Zurück zum Zitat Bhattacharyya, S., Rakshiti, P., Konar, A., Tibarewala, D.N., Das, S., Nagar, A.K.: Differential evolution with temporal difference q-learning based feature selection for motor imagery eeg data. In: Proceedings of IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), April 2013, pp. 138–145 Bhattacharyya, S., Rakshiti, P., Konar, A., Tibarewala, D.N., Das, S., Nagar, A.K.: Differential evolution with temporal difference q-learning based feature selection for motor imagery eeg data. In: Proceedings of IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), April 2013, pp. 138–145
39.
Zurück zum Zitat Iliya, S., Goodyer, E., Shell, J., Gongora, M., Gow, J.: Optimized neural network using differential evolutionary and swarm intelligence optimization algorithms for rf power prediction in cognitive radio network: A comparative study. In: Proceedings of IEEE 6th International Conference on Adaptive Science Technology (ICAST), October 2014, pp. 1–7 Iliya, S., Goodyer, E., Shell, J., Gongora, M., Gow, J.: Optimized neural network using differential evolutionary and swarm intelligence optimization algorithms for rf power prediction in cognitive radio network: A comparative study. In: Proceedings of IEEE 6th International Conference on Adaptive Science Technology (ICAST), October 2014, pp. 1–7
40.
Zurück zum Zitat Anumandla, K.K., Peesapati, R., Sabat, S.L., Udgata, S.K., Abraham, A.: Field programmable gate arrays-based differential evolution coprocessor: a case study of spectrum allocation in cognitive radio network. IET Comput. Digital Tech. 7(5), 221–234 (2013)CrossRef Anumandla, K.K., Peesapati, R., Sabat, S.L., Udgata, S.K., Abraham, A.: Field programmable gate arrays-based differential evolution coprocessor: a case study of spectrum allocation in cognitive radio network. IET Comput. Digital Tech. 7(5), 221–234 (2013)CrossRef
41.
Zurück zum Zitat Anumandla, K.K., Akella, B., Sabat, S.L., Udgata, S.K.: Spectrum allocation in cognitive radio networks using multi-objective differential evolution algorithm. In: Proceedings of International Conference on Signal Processing and Integrated Networks (SPIN), February 2015, pp. 264–269 Anumandla, K.K., Akella, B., Sabat, S.L., Udgata, S.K.: Spectrum allocation in cognitive radio networks using multi-objective differential evolution algorithm. In: Proceedings of International Conference on Signal Processing and Integrated Networks (SPIN), February 2015, pp. 264–269
42.
Zurück zum Zitat Lina, C.: Power control algorithm for cognitive radio based on differential evolution. In: Proceedings of International Conference on Computer Application and System Modeling (ICCASM 2010), Vol. 7, October 2010, V7-474–V7-478 Lina, C.: Power control algorithm for cognitive radio based on differential evolution. In: Proceedings of International Conference on Computer Application and System Modeling (ICCASM 2010), Vol. 7, October 2010, V7-474–V7-478
43.
Zurück zum Zitat Zhang, X., Zhang, X.: Population-adaptive differential evolution-based power allocation algorithm for cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2016(1), 219 (2016)CrossRef Zhang, X., Zhang, X.: Population-adaptive differential evolution-based power allocation algorithm for cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2016(1), 219 (2016)CrossRef
44.
Zurück zum Zitat Almeida, R.J., Kaymak, U., Sousa, J.M.C.: Fuzzy rule extraction from typicality and membership partitions. In: Proceedings of IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, June 2008, pp. 1964–1970 Almeida, R.J., Kaymak, U., Sousa, J.M.C.: Fuzzy rule extraction from typicality and membership partitions. In: Proceedings of IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, June 2008, pp. 1964–1970
45.
Zurück zum Zitat Hu, C., Yan, X.: A hybrid differential evolution algorithm integrated with an ant system and its application. Comput. Math. Appl. 62(1), 32–43 (2011)MathSciNetCrossRefMATH Hu, C., Yan, X.: A hybrid differential evolution algorithm integrated with an ant system and its application. Comput. Math. Appl. 62(1), 32–43 (2011)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Nobakhti, A., Wang, H.: A simple self-adaptive differential evolution algorithm with application on the alstom gasifier. Appl. Soft Comput. 8(1), 350–370 (2008)CrossRef Nobakhti, A., Wang, H.: A simple self-adaptive differential evolution algorithm with application on the alstom gasifier. Appl. Soft Comput. 8(1), 350–370 (2008)CrossRef
47.
Zurück zum Zitat Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans. Evol. Comput. 15(1), 99–119 (2011)CrossRef Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans. Evol. Comput. 15(1), 99–119 (2011)CrossRef
48.
Zurück zum Zitat Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)CrossRef Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)CrossRef
49.
Zurück zum Zitat Li, X., Yin, M.: Modified differential evolution with self-adaptive parameters method. J. Comb. Optim. 31(2), 546–576 (2016)MathSciNetCrossRefMATH Li, X., Yin, M.: Modified differential evolution with self-adaptive parameters method. J. Comb. Optim. 31(2), 546–576 (2016)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefMATH Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Gong, W., Cai, Z., Wang, Y.: Repairing the crossover rate in adaptive differential evolution. Appl. Soft Comput. 15, 149–168 (2014)CrossRef Gong, W., Cai, Z., Wang, Y.: Repairing the crossover rate in adaptive differential evolution. Appl. Soft Comput. 15, 149–168 (2014)CrossRef
52.
Zurück zum Zitat Mohamed, A.W., Sabry, H.Z., Abd-Elaziz, T.: Real parameter optimization by an effective differential evolution algorithm. Egypt. Inf. J. 14(1), 37–53 (2013)CrossRef Mohamed, A.W., Sabry, H.Z., Abd-Elaziz, T.: Real parameter optimization by an effective differential evolution algorithm. Egypt. Inf. J. 14(1), 37–53 (2013)CrossRef
Metadaten
Titel
Differential Evolution in PFCM Clustering for Energy Efficient Cooperative Spectrum Sensing
verfasst von
Anal Paul
Santi P. Maity
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8974-9_5