Skip to main content

2024 | OriginalPaper | Buchkapitel

Differentially Private Quantile Regression

verfasst von : Tran Tran, Matthew Reimherr, Aleksandra Slavkovic

Erschienen in: Privacy in Statistical Databases

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantile regression (QR) is a powerful and robust statistical modeling method broadly used in many fields such as economics, ecology, and healthcare. However, it has not been well-explored in differential privacy (DP) since its loss function lacks strong convexity and twice differentiability, often required by many DP mechanisms. We implement the smoothed QR loss via convolution within the K-Norm Gradient mechanism (KNG) and prove the resulting estimate converges to the non-private one asymptotically. Additionally, our work is the first to extensively investigate the empirical performance of DP smoothing QR under pure-, approximate- and concentrated-DP and four mechanisms, and cases commonly encountered in practice such as heavy-tailed and heteroscedastic data. We find that the Objective Perturbation Mechanism and KNG are the top performers across the simulated settings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016) Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016)
2.
Zurück zum Zitat Abowd, J., et al.: The 2020 Census Disclosure Avoidance System TopDown Algorithm. Harvard Data Science Review (2022) Abowd, J., et al.: The 2020 Census Disclosure Avoidance System TopDown Algorithm. Harvard Data Science Review (2022)
5.
Zurück zum Zitat Arnold, C., Neunhoeffer, M.: Really useful synthetic data–a framework to evaluate the quality of differentially private synthetic data. arXiv:2004.07740 (2020) Arnold, C., Neunhoeffer, M.: Really useful synthetic data–a framework to evaluate the quality of differentially private synthetic data. arXiv:​2004.​07740 (2020)
6.
Zurück zum Zitat Awan, J., Slavković, A.: Structure and sensitivity in differential privacy: comparing k-norm mechanisms. J. Am. Stat. Assoc. 116(534), 935–954 (2021)MathSciNetCrossRef Awan, J., Slavković, A.: Structure and sensitivity in differential privacy: comparing k-norm mechanisms. J. Am. Stat. Assoc. 116(534), 935–954 (2021)MathSciNetCrossRef
7.
Zurück zum Zitat Bassily, R., Feldman, V., Talwar, K., Thakurta, A.: Private stochastic convex optimization with optimal rates. In: NeurIPS (2019) Bassily, R., Feldman, V., Talwar, K., Thakurta, A.: Private stochastic convex optimization with optimal rates. In: NeurIPS (2019)
9.
Zurück zum Zitat Brunel, V.E., Avella-Medina, M.: Propose, test, release: differentially private estimation with high probability. arXiv preprint arXiv:2002.08774 (2020) Brunel, V.E., Avella-Medina, M.: Propose, test, release: differentially private estimation with high probability. arXiv preprint arXiv:​2002.​08774 (2020)
11.
Zurück zum Zitat Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(3) (2011) Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(3) (2011)
12.
Zurück zum Zitat Chen, D., Chua, G.: Differentially private stochastic convex optimization under quantile loss. In: International Conference on Machine Learning. PMLR (2023) Chen, D., Chua, G.: Differentially private stochastic convex optimization under quantile loss. In: International Conference on Machine Learning. PMLR (2023)
14.
Zurück zum Zitat Dabney, W., Rowland, M., Bellemare, M., Munos, R.: Distributional reinforcement learning with quantile regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Dabney, W., Rowland, M., Bellemare, M., Munos, R.: Distributional reinforcement learning with quantile regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
16.
Zurück zum Zitat Drechsler, J., Globus-Harris, I., Mcmillan, A., Sarathy, J., Smith, A.: Nonparametric differentially private confidence intervals for the median. J. Survey Stat. Methodol. 10(3), 804–829 (2022)CrossRef Drechsler, J., Globus-Harris, I., Mcmillan, A., Sarathy, J., Smith, A.: Nonparametric differentially private confidence intervals for the median. J. Survey Stat. Methodol. 10(3), 804–829 (2022)CrossRef
17.
Zurück zum Zitat Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for locally private estimation. J. Am. Stat. Assoc. (2018) Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for locally private estimation. J. Am. Stat. Assoc. (2018)
19.
Zurück zum Zitat Dwork, C., Smith, A., Steinke, T., Ullman, J.: Exposed! a survey of attacks on private data. Ann. Rev. Stat. Appl. 4, 61–84 (2017)CrossRef Dwork, C., Smith, A., Steinke, T., Ullman, J.: Exposed! a survey of attacks on private data. Ann. Rev. Stat. Appl. 4, 61–84 (2017)CrossRef
20.
Zurück zum Zitat Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1054–1067 (2014) Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1054–1067 (2014)
21.
Zurück zum Zitat Fernandes, M., Guerre, E., Horta, E.: Smoothing quantile regressions. J. Bus. Econ. Stat. 39(1), 338–357 (2021)MathSciNetCrossRef Fernandes, M., Guerre, E., Horta, E.: Smoothing quantile regressions. J. Bus. Econ. Stat. 39(1), 338–357 (2021)MathSciNetCrossRef
22.
Zurück zum Zitat Garfinkel, S.: Differential Privacy and the 2020 US Census. MIT Case Studies in Social and Ethical Responsibilities of Computing (2022) Garfinkel, S.: Differential Privacy and the 2020 US Census. MIT Case Studies in Social and Ethical Responsibilities of Computing (2022)
23.
Zurück zum Zitat Gillenwater, J., Joseph, M., Kulesza, A.: Differentially private quantiles. In: International Conference on Machine Learning, pp. 3713–3722. PMLR (2021) Gillenwater, J., Joseph, M., Kulesza, A.: Differentially private quantiles. In: International Conference on Machine Learning, pp. 3713–3722. PMLR (2021)
24.
Zurück zum Zitat He, X., Pan, X., Tan, K.M., Zhou, W.X.: Smoothed quantile regression with large-scale inference. J. Econ. 232(2), 367–388 (2023)MathSciNetCrossRef He, X., Pan, X., Tan, K.M., Zhou, W.X.: Smoothed quantile regression with large-scale inference. J. Econ. 232(2), 367–388 (2023)MathSciNetCrossRef
25.
Zurück zum Zitat Horowitz, J.: Bootstrap methods for median regression. Econometrica (1998) Horowitz, J.: Bootstrap methods for median regression. Econometrica (1998)
26.
Zurück zum Zitat Jarin, I., Eshete, B.: DP-UTIL: comprehensive utility analysis of differential privacy in machine learning. In: Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy, pp. 41–52 (2022) Jarin, I., Eshete, B.: DP-UTIL: comprehensive utility analysis of differential privacy in machine learning. In: Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy, pp. 41–52 (2022)
27.
Zurück zum Zitat Kaplan, D.M., Sun, Y.: Smoothed estimating equations for instrumental variables quantile regression. Economet. Theor. 33(1), 105–157 (2017)MathSciNetCrossRef Kaplan, D.M., Sun, Y.: Smoothed estimating equations for instrumental variables quantile regression. Economet. Theor. 33(1), 105–157 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Kaplan, H., Schnapp, S., Stemmer, U.: Differentially private approximate quantiles. In: International Conference on Machine Learning, pp. 10751–10761. PMLR (2022) Kaplan, H., Schnapp, S., Stemmer, U.: Differentially private approximate quantiles. In: International Conference on Machine Learning, pp. 10751–10761. PMLR (2022)
29.
Zurück zum Zitat Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. In: Conference on Learning Theory. JMLR (2012) Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. In: Conference on Learning Theory. JMLR (2012)
30.
Zurück zum Zitat Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica (1978) Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica (1978)
31.
Zurück zum Zitat Lee, J., Kifer, D.: Concentrated differentially private gradient descent with adaptive per-iteration privacy budget. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018) Lee, J., Kifer, D.: Concentrated differentially private gradient descent with adaptive per-iteration privacy budget. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)
32.
Zurück zum Zitat Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. In: Conference on Data Engineering. IEEE (2008) Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. In: Conference on Data Engineering. IEEE (2008)
33.
Zurück zum Zitat McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science. IEEE (2007) McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science. IEEE (2007)
34.
Zurück zum Zitat Oberski, D.L., Kreuter, F.: Differential privacy and social science: An urgent puzzle. Harvard Data Sci. Rev. 2(1), 1–21 (2020)CrossRef Oberski, D.L., Kreuter, F.: Differential privacy and social science: An urgent puzzle. Harvard Data Sci. Rev. 2(1), 1–21 (2020)CrossRef
35.
Zurück zum Zitat Pejó, B., Desfontaines, D.: Guide To Differential Privacy Modifications: A Taxonomy of Variants and Extensions. Springer, Berlin (2022) Pejó, B., Desfontaines, D.: Guide To Differential Privacy Modifications: A Taxonomy of Variants and Extensions. Springer, Berlin (2022)
36.
Zurück zum Zitat Ramsay, K., Jagannath, A., Chenouri, S.: Concentration of the exponential mechanism and differentially private multivariate medians. arXiv:2210.06459 (2022) Ramsay, K., Jagannath, A., Chenouri, S.: Concentration of the exponential mechanism and differentially private multivariate medians. arXiv:​2210.​06459 (2022)
37.
Zurück zum Zitat Reimherr, M., Awan, J.: KNG: the k-norm gradient mechanism. In: NeuRIPS, vol. 32 (2019) Reimherr, M., Awan, J.: KNG: the k-norm gradient mechanism. In: NeuRIPS, vol. 32 (2019)
38.
Zurück zum Zitat Rogers, R., et al.: Linkedin’s audience engagements API: a privacy preserving data analytics system at scale. arXiv:2002.05839 (2020) Rogers, R., et al.: Linkedin’s audience engagements API: a privacy preserving data analytics system at scale. arXiv:​2002.​05839 (2020)
39.
Zurück zum Zitat Ruggles, S., Fitch, C., Magnuson, D., Schroeder, J.: DP and Census data: Implications for social and economic research. In: AEA Papers and Proceedings (2019) Ruggles, S., Fitch, C., Magnuson, D., Schroeder, J.: DP and Census data: Implications for social and economic research. In: AEA Papers and Proceedings (2019)
40.
Zurück zum Zitat Sherwood, B., Wang, L., Zhou, X.H.: Weighted quantile regression for analyzing health care cost data with missing covariates. Stat. Med. (2013) Sherwood, B., Wang, L., Zhou, X.H.: Weighted quantile regression for analyzing health care cost data with missing covariates. Stat. Med. (2013)
41.
Zurück zum Zitat Silverman, B.: Density estimation for statistics and data analysis. Routledge (2018) Silverman, B.: Density estimation for statistics and data analysis. Routledge (2018)
42.
Zurück zum Zitat Smith, A.: Privacy-preserving statistical estimation with optimal convergence rates. In: Proceedings of the 43th ACM Symposium on Theory of Computing (2011) Smith, A.: Privacy-preserving statistical estimation with optimal convergence rates. In: Proceedings of the 43th ACM Symposium on Theory of Computing (2011)
43.
Zurück zum Zitat Snoke, J., Raab, G.M., Nowok, B., Dibben, C., Slavkovic, A.: General and specific utility measures for synthetic data. J. R. Stat. Soc. Ser. A Stat. Soc. 181(3), 663–688 (2018)MathSciNetCrossRef Snoke, J., Raab, G.M., Nowok, B., Dibben, C., Slavkovic, A.: General and specific utility measures for synthetic data. J. R. Stat. Soc. Ser. A Stat. Soc. 181(3), 663–688 (2018)MathSciNetCrossRef
44.
Zurück zum Zitat Tan, K.M., Wang, L., Zhou, W.X.: High-dimensional quantile regression: convolution smoothing and concave regularization. J. R. Stat. Soc. Ser. B Stat Methodol. 84(1), 205–233 (2022)MathSciNetCrossRef Tan, K.M., Wang, L., Zhou, W.X.: High-dimensional quantile regression: convolution smoothing and concave regularization. J. R. Stat. Soc. Ser. B Stat Methodol. 84(1), 205–233 (2022)MathSciNetCrossRef
45.
Zurück zum Zitat Whang, Y.J.: Smoothed empirical likelihood methods for quantile regression models. Economet. Theor. 22(2), 173–205 (2006)MathSciNetCrossRef Whang, Y.J.: Smoothed empirical likelihood methods for quantile regression models. Economet. Theor. 22(2), 173–205 (2006)MathSciNetCrossRef
46.
Zurück zum Zitat Wood, A., et al.: Differential privacy: a primer for a non-technical audience. Vand. J. Ent. Tech. L. 21, 209 (2018) Wood, A., et al.: Differential privacy: a primer for a non-technical audience. Vand. J. Ent. Tech. L. 21, 209 (2018)
47.
Zurück zum Zitat You, W., Guo, Y., Zhu, H., Tang, Y.: Oil price shocks, economic policy uncertainty and industry stock returns in china: asymmetric effects with quantile regression. Energy Econ. 68, 1–18 (2017)CrossRef You, W., Guo, Y., Zhu, H., Tang, Y.: Oil price shocks, economic policy uncertainty and industry stock returns in china: asymmetric effects with quantile regression. Energy Econ. 68, 1–18 (2017)CrossRef
48.
Zurück zum Zitat Zheng, S.: Gradient descent algorithms for quantile regression with smooth approximation. Int. J. Mach. Learn. Cybern. (2011) Zheng, S.: Gradient descent algorithms for quantile regression with smooth approximation. Int. J. Mach. Learn. Cybern. (2011)
Metadaten
Titel
Differentially Private Quantile Regression
verfasst von
Tran Tran
Matthew Reimherr
Aleksandra Slavkovic
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-69651-0_2