Zum Inhalt

Diffuse glioma classification with deep learning and explainability: addressing challenges in histopathology image analysis

  • 31.10.2025
  • Neural Networks

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brain tumors are among the most lethal diseases, causing significant neurological damage and high mortality. Diffuse gliomas, a highly invasive subtype, challenge treatment due to widespread brain infiltration and therapy resistance. This paper proposes a deep learning framework for detecting diffuse glioma and its subtypes from H&E-stained WSI patches, with both patch-level and patient-level detection, along with visualization to enhance explainability. Automation of detection enhances speed and consistency, reducing the workload of pathologists significantly. The proposed framework consists of three stages: a diffuse glioma patch classifier, a diffuse glioma subtype classifier, and a patient-level classifier. Additionally, four different explainable AI techniques including, Grad-CAM, Grad-CAM++, Score-CAM, and Smooth Grad-CAM + + were employed to highlight the diffuse glioma-affected areas. This study utilizes the DeepHisto dataset consisting of tiles from H&E-stained WSIs of 28 adult-type diffuse glioma cases from the NCP, Luxembourg National Health Laboratory. The data were preprocessed using a novel technique and trained with classification models including DenseNet121, MobileNetV2, an ensemble of DenseNet121 and MobileNetV2, and Vision Transformer. The ensemble model showed robust performance in diffuse glioma patch classification, achieving a specificity of 96.14% and an accuracy of 91.33%. The diffuse glioma subtype classifier recorded a specificity of 92.26%. For patient-level identification, the diffuse glioma classifier achieved an F1 score of 93.53%, while the diffuse glioma subtype classifier reached an accuracy of 95.23% and a specificity of 97.61%. The proposed deep learning framework for the automated detection of diffuse glioma and its subtypes demonstrated promising results. This framework has the potential to serve as a reliable diagnostic tool, enabling efficient, accurate, and cost-effective analysis of diffuse gliomas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Titel
Diffuse glioma classification with deep learning and explainability: addressing challenges in histopathology image analysis
Verfasst von
Ishrat Jahan
Rafif Mahmood Al-Saady
Semir Vranić
Muhammad E. H. Chowdhury
Publikationsdatum
31.10.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-025-10932-1
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
    Bildnachweise
    AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, NTT Data/© NTT Data, Wildix/© Wildix, arvato Systems GmbH/© arvato Systems GmbH, Ninox Software GmbH/© Ninox Software GmbH, Nagarro GmbH/© Nagarro GmbH, GWS mbH/© GWS mbH, CELONIS Labs GmbH, USU GmbH/© USU GmbH, G Data CyberDefense/© G Data CyberDefense, FAST LTA/© FAST LTA, Vendosoft/© Vendosoft, Kumavision/© Kumavision, Noriis Network AG/© Noriis Network AG, WSW Software GmbH/© WSW Software GmbH, tts GmbH/© tts GmbH, Asseco Solutions AG/© Asseco Solutions AG, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH