Skip to main content
Erschienen in: Cellulose 4/2018

14.03.2018 | Original Paper

Diffusion and phase separation at the morphology formation of cellulose membranes by regeneration from N-methylmorpholine N-oxide solutions

verfasst von: Sergey O. Ilyin, Veronika V. Makarova, Tatyana S. Anokhina, Victoria Y. Ignatenko, Tatiana V. Brantseva, Alexey V. Volkov, Sergey V. Antonov

Erschienen in: Cellulose | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phase separation of polymer solutions initiated by the addition of a nonsolvent is the main method for the preparation of polymer membranes. Depending on the application, such membranes must have a different pore size, which depends on the numerous parameters of the forming process. The liquid–liquid phase separation has been considered for cellulose solutions in N-methylmorpholine N-oxide (NMMO) interacting with various alcohols (methyl, ethyl, isopropyl, and isobutyl). Kinetics of cellulose regeneration was investigated by laser interferometry technique to understand the mechanism of cellulose film structure formation in the NMMO process. Influence of temperature, coagulant nature, and cellulose content on the process kinetics and morphology of the films was studied and corresponding interdiffusion coefficients were calculated. Based on the solubility parameters, triple phase diagrams of the systems were calculated. Formation of different morphologies was explained primarily by the different position of the composition path, the bimodal curve, and the gelation line in the phase diagrams. The second important parameter was the different rate of mutual diffusion of the NMMO and coagulants, due to the difference in the viscosity of the latter. Using methanol or ethanol as coagulation baths leads to obtaining the nanoporous structure of cellulose films, whereas isopropanol and isobutanol favors macropore formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe Y, Mochizuki A (2002) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. I. Effect of membrane preparation conditions on its permeation characteristics. J Appl Polym Sci 84:2302–2307CrossRef Abe Y, Mochizuki A (2002) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. I. Effect of membrane preparation conditions on its permeation characteristics. J Appl Polym Sci 84:2302–2307CrossRef
Zurück zum Zitat Abe Y, Mochizuki A (2003) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of membranes prepared from N-methylmorpholine-N-oxide and cuprammonium solutions. J Appl Polym Sci 89:333–339CrossRef Abe Y, Mochizuki A (2003) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of membranes prepared from N-methylmorpholine-N-oxide and cuprammonium solutions. J Appl Polym Sci 89:333–339CrossRef
Zurück zum Zitat Anderson JE, Ullman R (1973) Mathematical analysis of factors influencing the skin thickness of asymmetric reverse osmosis membranes. J Appl Phys 44:4303–4311CrossRef Anderson JE, Ullman R (1973) Mathematical analysis of factors influencing the skin thickness of asymmetric reverse osmosis membranes. J Appl Phys 44:4303–4311CrossRef
Zurück zum Zitat Bang YH, Lee S, Park JB, Cho HH (1999) Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J Appl Polym Sci 73(13):2681–2690CrossRef Bang YH, Lee S, Park JB, Cho HH (1999) Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J Appl Polym Sci 73(13):2681–2690CrossRef
Zurück zum Zitat Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose–NMMO–water solutions. Biomacromolecules 6:1948–1953CrossRef Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose–NMMO–water solutions. Biomacromolecules 6:1948–1953CrossRef
Zurück zum Zitat Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188CrossRef Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188CrossRef
Zurück zum Zitat Boltzmann L (1894) Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten. Ann Phys 289(13):959–964CrossRef Boltzmann L (1894) Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten. Ann Phys 289(13):959–964CrossRef
Zurück zum Zitat Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23(1):5–55CrossRef Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23(1):5–55CrossRef
Zurück zum Zitat Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215CrossRef Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215CrossRef
Zurück zum Zitat Cho J, Amy G, Pellegrino J (2000) Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. J Membr Sci 164(1):89–110CrossRef Cho J, Amy G, Pellegrino J (2000) Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. J Membr Sci 164(1):89–110CrossRef
Zurück zum Zitat Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30(3–4):405–440CrossRef Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30(3–4):405–440CrossRef
Zurück zum Zitat Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Progr Polym Sci 26(9):1473–1524CrossRef Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Progr Polym Sci 26(9):1473–1524CrossRef
Zurück zum Zitat Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRef Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRef
Zurück zum Zitat Gao J, Tang LG (1999) Cellulose science. Science Publ. Comp, Beijing Gao J, Tang LG (1999) Cellulose science. Science Publ. Comp, Beijing
Zurück zum Zitat Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose–N-methylmorpholine-N-oxide–water Solutions. Biomacromolecules 8:424–432CrossRef Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose–N-methylmorpholine-N-oxide–water Solutions. Biomacromolecules 8:424–432CrossRef
Zurück zum Zitat Golova LK (1996) Processing of cellulose via highly concentrated “solid solutions. Fibre Chem 28(1):5–16CrossRef Golova LK (1996) Processing of cellulose via highly concentrated “solid solutions. Fibre Chem 28(1):5–16CrossRef
Zurück zum Zitat Golova LK, Kulichikhin VG, Papkov SP (1986) Mechanism of dissolution of cellulose in non-aqueous dissolving systems. Review Polym Sci USSR 28(9):1995–2011CrossRef Golova LK, Kulichikhin VG, Papkov SP (1986) Mechanism of dissolution of cellulose in non-aqueous dissolving systems. Review Polym Sci USSR 28(9):1995–2011CrossRef
Zurück zum Zitat Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRef Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Hauru LK, Hummel M, King AW, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13(9):2896–2905CrossRef Hauru LK, Hummel M, King AW, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13(9):2896–2905CrossRef
Zurück zum Zitat Ichwan M, Son TW (2012) Preparation and characterization of dense cellulose film for membrane application. J Appl Polym Sci 124(2):1409–1418CrossRef Ichwan M, Son TW (2012) Preparation and characterization of dense cellulose film for membrane application. J Appl Polym Sci 124(2):1409–1418CrossRef
Zurück zum Zitat Ilyin SO, Makarova VV, Anokhina TS, Volkov AV, Antonov SV (2017) Effect of coagulating agent viscosity on the kinetics of formation, morphology, and transport properties of cellulose nanofiltration membranes. Polym Sci Ser A 59(5):676–684CrossRef Ilyin SO, Makarova VV, Anokhina TS, Volkov AV, Antonov SV (2017) Effect of coagulating agent viscosity on the kinetics of formation, morphology, and transport properties of cellulose nanofiltration membranes. Polym Sci Ser A 59(5):676–684CrossRef
Zurück zum Zitat Jie X, Cao Y, Lin B, Yuan Q (2004) Gas permeation performance of cellulose hollow fiber membranes made from the cellulose/N-methylmorpholine-N-oxide/H2O system. J Appl Polym Sci 91(3):1873–1880CrossRef Jie X, Cao Y, Lin B, Yuan Q (2004) Gas permeation performance of cellulose hollow fiber membranes made from the cellulose/N-methylmorpholine-N-oxide/H2O system. J Appl Polym Sci 91(3):1873–1880CrossRef
Zurück zum Zitat Krigbaum WR, Carpenter DK (1954) Phase equilibria in polymer–liquid 1–liquid 2 systems. J Polym Sci 14(75):241–259CrossRef Krigbaum WR, Carpenter DK (1954) Phase equilibria in polymer–liquid 1–liquid 2 systems. J Polym Sci 14(75):241–259CrossRef
Zurück zum Zitat Kulichikhin VG, Golova LK, Makarov IS, Bondarenko GN, Berkovich AK, Ilyin SO (2016) Cellulose–co-polyacrylonitrile blends: properties of combined solutions in N-metylmorpholine-N-oxide and the formation and thermolysis of composite fibers. Polym Sci Ser C 58(1):74–84CrossRef Kulichikhin VG, Golova LK, Makarov IS, Bondarenko GN, Berkovich AK, Ilyin SO (2016) Cellulose–co-polyacrylonitrile blends: properties of combined solutions in N-metylmorpholine-N-oxide and the formation and thermolysis of composite fibers. Polym Sci Ser C 58(1):74–84CrossRef
Zurück zum Zitat Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43(22):5827–5837CrossRef Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43(22):5827–5837CrossRef
Zurück zum Zitat Li HJ, Cao YM, Qin JJ, Jie XM, Wang TH, Liu JH, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279(1):328–335CrossRef Li HJ, Cao YM, Qin JJ, Jie XM, Wang TH, Liu JH, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279(1):328–335CrossRef
Zurück zum Zitat Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16(2):189–198CrossRef Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16(2):189–198CrossRef
Zurück zum Zitat Lu Y, Wu Y (2008) Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Front Chem Sci Eng 2:204–208CrossRef Lu Y, Wu Y (2008) Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Front Chem Sci Eng 2:204–208CrossRef
Zurück zum Zitat Mackie JS, Meares P (1955) The diffusion of electrolytes in a cation-exchange resin membrane. I. Theoretical. Proc R Soc Lond Ser A 232:498–509CrossRef Mackie JS, Meares P (1955) The diffusion of electrolytes in a cation-exchange resin membrane. I. Theoretical. Proc R Soc Lond Ser A 232:498–509CrossRef
Zurück zum Zitat Makarova V, Kulichikhin V (2011) Application of interferometry to analysis of polymer–polymer and polymer–solvent interactions. In: Padron I (ed) Interferometry—research and applications in science and technology. InTech, Rijeka, pp 395–436 Makarova V, Kulichikhin V (2011) Application of interferometry to analysis of polymer–polymer and polymer–solvent interactions. In: Padron I (ed) Interferometry—research and applications in science and technology. InTech, Rijeka, pp 395–436
Zurück zum Zitat Malkin A, Askadsky A, Chalykh A, Kovriga V (1983) Experimental methods of polymer physics. Mir Publishers, Moscow Malkin A, Askadsky A, Chalykh A, Kovriga V (1983) Experimental methods of polymer physics. Mir Publishers, Moscow
Zurück zum Zitat Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2012) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46(1):257–266CrossRef Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2012) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46(1):257–266CrossRef
Zurück zum Zitat Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2(1):1–22 Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2(1):1–22
Zurück zum Zitat Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255CrossRef Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255CrossRef
Zurück zum Zitat Mao Z, Cao Y, Jie X, Kang G, Zhou M, Yuan Q (2010) Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep Purif Technol 72(1):28–33CrossRef Mao Z, Cao Y, Jie X, Kang G, Zhou M, Yuan Q (2010) Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep Purif Technol 72(1):28–33CrossRef
Zurück zum Zitat Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22(6):409–416CrossRef Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22(6):409–416CrossRef
Zurück zum Zitat Matano C (1933) On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel-copper system). Jpn J Appl Phys 8(3):109–113 Matano C (1933) On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel-copper system). Jpn J Appl Phys 8(3):109–113
Zurück zum Zitat Olsson C, Westman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven T, Godbout L (eds) Cellulose—fundamental aspects. Intech, Rijeka, pp 143–178 Olsson C, Westman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven T, Godbout L (eds) Cellulose—fundamental aspects. Intech, Rijeka, pp 143–178
Zurück zum Zitat Otero JA, Mazarrasa O, Villasante J, Silva V, Pradanos P, Calvo JI, Hernandez A (2008) Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Membr Sci 309:17–27CrossRef Otero JA, Mazarrasa O, Villasante J, Silva V, Pradanos P, Calvo JI, Hernandez A (2008) Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Membr Sci 309:17–27CrossRef
Zurück zum Zitat Pan ML, Li WJ, Wang MR, You C (2012) Preparation of the reed cellulose membrane by using NMMO Method. Adv Mater Res 538:128–131CrossRef Pan ML, Li WJ, Wang MR, You C (2012) Preparation of the reed cellulose membrane by using NMMO Method. Adv Mater Res 538:128–131CrossRef
Zurück zum Zitat Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRef
Zurück zum Zitat Robinson JP, Tarleton ES, Millington CR, Nijmeijer A (2004) Solvent flux through dense polymeric nanofiltration membranes. J Membr Sci 230:29–37CrossRef Robinson JP, Tarleton ES, Millington CR, Nijmeijer A (2004) Solvent flux through dense polymeric nanofiltration membranes. J Membr Sci 230:29–37CrossRef
Zurück zum Zitat Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Progr Polym Sci 26(9):1763–1837CrossRef Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Progr Polym Sci 26(9):1763–1837CrossRef
Zurück zum Zitat Scott RL (1949) The thermodynamics of high polymer solutions. IV. Phase equilibria in the ternary system: polymer–liquid 1–liquid 2. J Chem Phys 17(3):268–279CrossRef Scott RL (1949) The thermodynamics of high polymer solutions. IV. Phase equilibria in the ternary system: polymer–liquid 1–liquid 2. J Chem Phys 17(3):268–279CrossRef
Zurück zum Zitat Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426CrossRef Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426CrossRef
Zurück zum Zitat Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L (eds) Cellulose—medical, pharmaceutical and electronic applications. InTech, Rijeka. https://doi.org/10.5772/55178 Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L (eds) Cellulose—medical, pharmaceutical and electronic applications. InTech, Rijeka. https://​doi.​org/​10.​5772/​55178
Zurück zum Zitat Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127CrossRef Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127CrossRef
Zurück zum Zitat Tsar’kov SE, Malakhov AO, Litvinova EG, Volkov AV (2013) Nanofiltration of dye solutions through membranes based on poly(trimethylsilylpropyne). Petrol Chem 53(7):537–545CrossRef Tsar’kov SE, Malakhov AO, Litvinova EG, Volkov AV (2013) Nanofiltration of dye solutions through membranes based on poly(trimethylsilylpropyne). Petrol Chem 53(7):537–545CrossRef
Zurück zum Zitat Uddin AJ, Yamamoto A, Gotoh Y, Nagura M, Iwata M (2010) Preparation and physical properties of regenerated cellulose fibres from sugarcane bagasse. Text Res J 80(17):1846–1858CrossRef Uddin AJ, Yamamoto A, Gotoh Y, Nagura M, Iwata M (2010) Preparation and physical properties of regenerated cellulose fibres from sugarcane bagasse. Text Res J 80(17):1846–1858CrossRef
Zurück zum Zitat van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31CrossRef van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31CrossRef
Zurück zum Zitat van der Bruggen B, Mänttäri M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63:251–263CrossRef van der Bruggen B, Mänttäri M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63:251–263CrossRef
Zurück zum Zitat Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204CrossRef Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204CrossRef
Zurück zum Zitat Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Membr Sci 204(1):185–194CrossRef Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Membr Sci 204(1):185–194CrossRef
Zurück zum Zitat Xiong X, Duan J, Zou W, He X, Zheng W (2010) A pH-sensitive regenerated cellulose membrane. J Membr Sci 363(1):96–102CrossRef Xiong X, Duan J, Zou W, He X, Zheng W (2010) A pH-sensitive regenerated cellulose membrane. J Membr Sci 363(1):96–102CrossRef
Zurück zum Zitat Yushkin AA, Anokhina TS, Volkov AV (2015) Application of cellophane films as nanofiltration membranes. Petrol Chem 55(9):746–752CrossRef Yushkin AA, Anokhina TS, Volkov AV (2015) Application of cellophane films as nanofiltration membranes. Petrol Chem 55(9):746–752CrossRef
Zurück zum Zitat Zhang Y, Shao H, Wu C, Hu X (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1(4):141–148CrossRef Zhang Y, Shao H, Wu C, Hu X (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1(4):141–148CrossRef
Metadaten
Titel
Diffusion and phase separation at the morphology formation of cellulose membranes by regeneration from N-methylmorpholine N-oxide solutions
verfasst von
Sergey O. Ilyin
Veronika V. Makarova
Tatyana S. Anokhina
Victoria Y. Ignatenko
Tatiana V. Brantseva
Alexey V. Volkov
Sergey V. Antonov
Publikationsdatum
14.03.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1756-9

Weitere Artikel der Ausgabe 4/2018

Cellulose 4/2018 Zur Ausgabe