Skip to main content

2020 | OriginalPaper | Buchkapitel

Diffusion Measurements of CO2 Within Carbon Anodes for Aluminium Smelting

verfasst von : Epma Putri, Geoffrey Brooks, Graeme A. Snook, Lorentz Petter Lossius, Ingo Eick

Erschienen in: Light Metals 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A study of the CO/CO2 diffusion coefficients within the carbon anode and cryolite was carried out. Gas diffusion experiments were conducted to measure the diffusion coefficient of CO2 in conjunction with anode characterization using Mercury Intrusion Porosimetry (MIP). The diffusion coefficient value obtained varied from 1.38 × 10−6 m2/s to 7.89 × 10−6 m2/s in the temperature range from 25 to 960 °C. In addition, the diffusion coefficient of CO2 in cryolite at 960 °C was predicted to be 2.74 × 10−9 m2/s. Two verification studies were attempted to measure the diffusion coefficient in cryolite, but no reliable results were obtained. The results from this study suggest the gas transport for bubble growth is controlled by gas flow in the anode due to slower diffusion coefficient value in cryolite which is three orders of magnitude lower when gas diffusion coefficient for CO2 through the anode samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tarcy, GP, Kvande, H, Tabereaux, A (2011) Advancing the Industrial Aluminum Process: 20th Century Breakthrough Inventions and Developments. JOM, 63, 101–108. Tarcy, GP, Kvande, H, Tabereaux, A (2011) Advancing the Industrial Aluminum Process: 20th Century Breakthrough Inventions and Developments. JOM, 63, 101–108.
2.
Zurück zum Zitat Segatz M, Hop J, Reny, P, Gikling (2016) H. Hydro’s Cell Technology Path towards Specific Energy Consumption below 12 kWh/kg. Light Metals 2016: 301–305. Segatz M, Hop J, Reny, P, Gikling (2016) H. Hydro’s Cell Technology Path towards Specific Energy Consumption below 12 kWh/kg. Light Metals 2016: 301–305.
3.
Zurück zum Zitat Cooksey, MA, Taylor, MP, Chen, JJ (2008) Resistance due to Gas Bubbles in Aluminum Reduction Cells. JOM 60, 51–57. Cooksey, MA, Taylor, MP, Chen, JJ (2008) Resistance due to Gas Bubbles in Aluminum Reduction Cells. JOM 60, 51–57.
4.
Zurück zum Zitat Alam, M, Morsi Y, Yang W, Brooks G, Chen J. (2013) Investigation of Electrolytic Bubble Behaviour in Aluminium Smelting Cell. Light Metals 2013, 591. Alam, M, Morsi Y, Yang W, Brooks G, Chen J. (2013) Investigation of Electrolytic Bubble Behaviour in Aluminium Smelting Cell. Light Metals 2013, 591.
5.
Zurück zum Zitat Zoric, J, Solheim A (2000) On Gas Bubbles in Industrial Aluminium Cells with Prebaked Anodes and Their Influence on the Current Distribution. Journal of applied electrochemistry, 30: 787. Zoric, J, Solheim A (2000) On Gas Bubbles in Industrial Aluminium Cells with Prebaked Anodes and Their Influence on the Current Distribution. Journal of applied electrochemistry, 30: 787.
6.
Zurück zum Zitat Einarsrud KE, Johansen, ST, Eick I (2012) Anodic Bubble Behavior in Hall-Héroult Cells. Light Metals 2012: 875–879. Einarsrud KE, Johansen, ST, Eick I (2012) Anodic Bubble Behavior in Hall-Héroult Cells. Light Metals 2012: 875–879.
7.
Zurück zum Zitat Haupin, W, Kvande, H (2000) Thermodynamics of Electrochemical Reduction of Alumina. n Light Metals: Aluminum Reduction Technology, Volume 2, 160–167. Haupin, W, Kvande, H (2000) Thermodynamics of Electrochemical Reduction of Alumina. n Light Metals: Aluminum Reduction Technology, Volume 2, 160–167.
8.
Zurück zum Zitat Poncsák, S, Kiss, LI (2018) Role of the Porosity of Carbon Anodes in the Nucleation and Growth of Gas Bubbles. Light Metals 2018, 1261–1265. Poncsák, S, Kiss, LI (2018) Role of the Porosity of Carbon Anodes in the Nucleation and Growth of Gas Bubbles. Light Metals 2018, 1261–1265.
9.
Zurück zum Zitat Putri E, Brooks G, Snook, GA, Rørvik, S, Lossius, LP, Eick I (2018) Understanding the Anode Porosity as a Means for Improved Aluminium Smelting. Light Metals 2018, 1235–1242. Putri E, Brooks G, Snook, GA, Rørvik, S, Lossius, LP, Eick I (2018) Understanding the Anode Porosity as a Means for Improved Aluminium Smelting. Light Metals 2018, 1235–1242.
10.
Zurück zum Zitat Putri, E, Brooks G, Snook, GA, Eick, I, Lossius LP (2019) Diffusion and Flow of CO2 in Carbon Anode for Aluminium Smelting. Metallurgical and Materials Transactions B, 50, 846. Putri, E, Brooks G, Snook, GA, Eick, I, Lossius LP (2019) Diffusion and Flow of CO2 in Carbon Anode for Aluminium Smelting. Metallurgical and Materials Transactions B, 50, 846.
11.
Zurück zum Zitat Golovina E. (1952) The Question of the Gas Diffusion in the Carbon. Doklady Akademii Nauk CCCR, 141–145. Golovina E. (1952) The Question of the Gas Diffusion in the Carbon. Doklady Akademii Nauk CCCR, 141–145.
12.
Zurück zum Zitat Poling BE, Prausnitz, JM, O’connell, JP; (2001). The Properties of Gases and Liquids; Mcgraw-hill New York, Vol. 5. Poling BE, Prausnitz, JM, O’connell, JP; (2001). The Properties of Gases and Liquids; Mcgraw-hill New York, Vol. 5.
13.
Zurück zum Zitat Sutherland, W (1902). Ionization, Ionic Velocities, and Atomic Sizes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3, 161. Sutherland, W (1902). Ionization, Ionic Velocities, and Atomic Sizes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3, 161.
14.
Zurück zum Zitat Glasstone, S, Laidler, KJ, Eyring, H. (1941) The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. Glasstone, S, Laidler, KJ, Eyring, H. (1941) The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena.
15.
Zurück zum Zitat Sada, E, Katoh S, Yoshii H, Yasuda K (1980) Diffusivity of Carbon Dioxide in Molten Salts. Journal of Chemical and Engineering Data, 25, 341. Sada, E, Katoh S, Yoshii H, Yasuda K (1980) Diffusivity of Carbon Dioxide in Molten Salts. Journal of Chemical and Engineering Data, 25, 341.
16.
Zurück zum Zitat Poncsák, S, Kiss, LI (2012) Mechanism of Transport between the Anode-Bath Interface and the Active Bubble Generating Sites in Hall-Héroult Cells. Light Metals 2012, 773. Poncsák, S, Kiss, LI (2012) Mechanism of Transport between the Anode-Bath Interface and the Active Bubble Generating Sites in Hall-Héroult Cells. Light Metals 2012, 773.
17.
Zurück zum Zitat Vetyukov, MM and Acquah, F. (1971), Elektrokhimiya vol. 7, p. 557. Vetyukov, MM and Acquah, F. (1971), Elektrokhimiya vol. 7, p. 557.
18.
Zurück zum Zitat Janz, GJ, Bansal N (1982). Molten Salts Data: Diffusion Coefficients in Single and Multi-Component Salt Systems. Journal of Physical and Chemical Reference Data, 11, 505. Janz, GJ, Bansal N (1982). Molten Salts Data: Diffusion Coefficients in Single and Multi-Component Salt Systems. Journal of Physical and Chemical Reference Data, 11, 505.
19.
Zurück zum Zitat Moya C, Palomar J, Gonzalez-Miquel M, Bedia J, Rodriguez, F. (2014) Diffusion Coefficients of CO2 in Ionic Liquids Estimated by Gravimetry. Industrial & Engineering Chemistry Research, 53, 13782–13785. Moya C, Palomar J, Gonzalez-Miquel M, Bedia J, Rodriguez, F. (2014) Diffusion Coefficients of CO2 in Ionic Liquids Estimated by Gravimetry. Industrial & Engineering Chemistry Research, 53, 13782–13785.
20.
Zurück zum Zitat Gonzalez-Miquel M, Bedia, J, Abrusci, C, Palomar, J, Rodriguez, F(2013) Anion Effects on Kinetics and Thermodynamics of CO2 Absorption in Ionic Liquids. The Journal of Physical Chemistry B, 117, 3398. Gonzalez-Miquel M, Bedia, J, Abrusci, C, Palomar, J, Rodriguez, F(2013) Anion Effects on Kinetics and Thermodynamics of CO2 Absorption in Ionic Liquids. The Journal of Physical Chemistry B, 117, 3398.
21.
Zurück zum Zitat Sada, E, Katoh, S, Yoshii, H, Yasuda K. (1982) Rates of Gas Absorption into Molten Salts. Industrial & Engineering Chemistry Fundamentals, 21, 43–46. Sada, E, Katoh, S, Yoshii, H, Yasuda K. (1982) Rates of Gas Absorption into Molten Salts. Industrial & Engineering Chemistry Fundamentals, 21, 43–46.
22.
Zurück zum Zitat Katoh, S, Sada, E. (1980) Rates of Mass Transfer in Affinity Chromatography. Journal of Chemical Engineering of Japan, 13, 151–154. Katoh, S, Sada, E. (1980) Rates of Mass Transfer in Affinity Chromatography. Journal of Chemical Engineering of Japan, 13, 151–154.
Metadaten
Titel
Diffusion Measurements of CO2 Within Carbon Anodes for Aluminium Smelting
verfasst von
Epma Putri
Geoffrey Brooks
Graeme A. Snook
Lorentz Petter Lossius
Ingo Eick
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_162

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.