Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Function Framework, Path Integrals, and Parallels Between Them

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effects of diffusion on the magnetic resonance (MR) signal carry a wealth of information regarding the microstructure of the medium. Characterizing such effects is immensely important for quantitative studies aiming to obtain microstructural parameters using diffusion MR acquisitions. Studies in recent years have demonstrated the potential of sophisticated gradient waveforms to provide novel information inaccessible by traditional measurements. There are mainly two approaches that can be used to incorporate the influence of restricted diffusion, particularly on experiments featuring general gradient waveforms. The multiple propagator framework essentially reduces the problem to a path integral, which can be evaluated analytically or approximated via a matrix representation. The multiple correlation function method tackles the Bloch–Torrey equation, and employs an alternative matrix formulation. In this work, we present the two techniques in a unified fashion and link the two approaches. We provide an explanation for why the multiple correlation function is computationally more efficient in the case of waveforms featuring piecewise constant gradients.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Strictly speaking, the form of V (ξ(ν )) differs slightly from that in Eq. (4) due to the explicit time dependence. However, this difference doesn’t appear to violate the applicability of Kac’s theorem.
 
2
With the boundary condition that \(\mathrm{U}(0, 0) = \mathbb{I}\), where \(\mathbb{I}\) is the identity operator.
 
3
The wave vector operator, when expressed in the position basis, is a derivative, i.e., \(\langle \boldsymbol{r}\vert \mathbf{K} = -\mathrm{i}\nabla \langle \boldsymbol{r}\vert\). Its commutator with the position operator is \(\left [\mathbf{K},\mathbf{R}\right ] = -\mathrm{i}\).
 
4
Also note that for a practical implementation where the limit \(\tau \rightarrow 0\) is not actually taken, one might want to offset the argument of H by τ∕2 (like in Fig. 1) or some other amount, but we need not bother with that for our purposes.
 
5
The eigenfunction corresponding to the \(\boldsymbol{k} = 0\) eigenvalue is constant over the volume of interest: \(\langle \boldsymbol{r}\vert 0\rangle = V ^{-1/2}\). Hence \(\int \mathrm{d}\boldsymbol{r}\,\langle \boldsymbol{r}\vert \boldsymbol{k}\rangle = V ^{1/2}\int \mathrm{d}\boldsymbol{r}\,\langle 0\vert \boldsymbol{r}\rangle \langle \boldsymbol{r}\vert \boldsymbol{k}\rangle = V ^{1/2}\langle 0\vert \boldsymbol{k}\rangle = V ^{1/2}\delta _{0,\boldsymbol{k}}\). On the other hand, the initial magnetization is in equilibrium, and therefore proportional to the \(\boldsymbol{k} = 0\) eigenket, meaning \(\langle \boldsymbol{k}^{{\prime}}\vert m(0)\rangle = c\delta _{\boldsymbol{k}^{{\prime}},0}\). For convenience, we assume a normalization for \(m(\boldsymbol{r},t)\) such that \(\int \mathrm{d}\boldsymbol{r}\,m(\boldsymbol{r}, 0) = 1\), whereby c = V −1∕2.
 
6
More details can be found in [34].
 
Literatur
1.
Zurück zum Zitat Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)CrossRef Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)CrossRef
3.
Zurück zum Zitat Avram, L., Özarslan, E., Assaf, Y., Bar-Shir, A., Cohen, Y., Basser, P.J.: Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR Biomed. 21(8), 888–898 (2008). doi:10.1002/nbm.1277. http://dx.doi.org/10.1002/nbm.1277 Avram, L., Özarslan, E., Assaf, Y., Bar-Shir, A., Cohen, Y., Basser, P.J.: Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR Biomed. 21(8), 888–898 (2008). doi:10.1002/nbm.1277. http://​dx.​doi.​org/​10.​1002/​nbm.​1277
4.
Zurück zum Zitat Avram, A.V., Özarslan, E., Sarlls, J.E., Basser, P.J.: In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qpfg) diffusion mri on a clinical scanner. NeuroImage 64, 229–239 (2013). doi:10.1016/j.neuroimage.2012.08.048CrossRef Avram, A.V., Özarslan, E., Sarlls, J.E., Basser, P.J.: In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qpfg) diffusion mri on a clinical scanner. NeuroImage 64, 229–239 (2013). doi:10.1016/j.neuroimage.2012.08.048CrossRef
5.
Zurück zum Zitat Axelrod, S., Sen, P.N.: Nuclear magnetic resonance spin echoes for restricted diffusion in an inhomogeneous field: methods and asymptotic regimes. J. Chem. Phys. 114, 6878–6895 (2001)CrossRef Axelrod, S., Sen, P.N.: Nuclear magnetic resonance spin echoes for restricted diffusion in an inhomogeneous field: methods and asymptotic regimes. J. Chem. Phys. 114, 6878–6895 (2001)CrossRef
6.
Zurück zum Zitat Bar-Shir, A., Avram, L., Özarslan, E., Basser, P.J., Cohen, Y.: The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: experiments and simulations. J. Magn. Reson. 194(2), 230–236 (2008). doi:10.1016/j.jmr.2008.07.009. http://dx.doi.org/10.1016/j.jmr.2008.07.009 Bar-Shir, A., Avram, L., Özarslan, E., Basser, P.J., Cohen, Y.: The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: experiments and simulations. J. Magn. Reson. 194(2), 230–236 (2008). doi:10.1016/j.jmr.2008.07.009. http://​dx.​doi.​org/​10.​1016/​j.​jmr.​2008.​07.​009
7.
Zurück zum Zitat Barzykin, A.V.: Exact solution of the Torrey-Bloch equation for a spin echo in restricted geometries. Phys. Rev. B 58, 14171–14174 (1998)CrossRef Barzykin, A.V.: Exact solution of the Torrey-Bloch equation for a spin echo in restricted geometries. Phys. Rev. B 58, 14171–14174 (1998)CrossRef
9.
Zurück zum Zitat Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)CrossRef Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)CrossRef
10.
Zurück zum Zitat Callaghan, P.T.: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms. J. Magn. Reson. 129, 74–84 (1997)CrossRef Callaghan, P.T.: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms. J. Magn. Reson. 129, 74–84 (1997)CrossRef
11.
Zurück zum Zitat Caprihan, A., Wang, L.Z., Fukushima, E.: A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient. J. Magn. Reson. A 118, 94–102 (1996)CrossRef Caprihan, A., Wang, L.Z., Fukushima, E.: A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient. J. Magn. Reson. A 118, 94–102 (1996)CrossRef
12.
Zurück zum Zitat Carr, H.Y., Purcell, E.M.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)CrossRef Carr, H.Y., Purcell, E.M.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)CrossRef
13.
Zurück zum Zitat Cheng, Y., Cory, D.G.: Multiple scattering by NMR. J. Am. Chem. Soc. 121, 7935–7936 (1999)CrossRef Cheng, Y., Cory, D.G.: Multiple scattering by NMR. J. Am. Chem. Soc. 121, 7935–7936 (1999)CrossRef
14.
Zurück zum Zitat Codd, S.L., Callaghan, P.T.: Spin echo analysis of restricted diffusion under generalized gradient waveforms: planar, cylindrical, and spherical pores with wall relaxivity. J. Magn. Reson. 137, 358–372 (1999)CrossRef Codd, S.L., Callaghan, P.T.: Spin echo analysis of restricted diffusion under generalized gradient waveforms: planar, cylindrical, and spherical pores with wall relaxivity. J. Magn. Reson. 137, 358–372 (1999)CrossRef
15.
Zurück zum Zitat Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96, 10422–10427 (1999)CrossRef Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96, 10422–10427 (1999)CrossRef
16.
Zurück zum Zitat Cory, D.G., Garroway, A.N., Miller, J.B.: Applications of spin transport as a probe of local geometry. Polym. Prepr. 31, 149 (1990) Cory, D.G., Garroway, A.N., Miller, J.B.: Applications of spin transport as a probe of local geometry. Polym. Prepr. 31, 149 (1990)
17.
Zurück zum Zitat Gore, J.C., Xu, J., Colvin, D.C., Yankeelov, T.E., Parsons, E.C., Does, M.D.: Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed. 23(7), 745–56 (2010). doi:10.1002/nbm.1531CrossRefMATH Gore, J.C., Xu, J., Colvin, D.C., Yankeelov, T.E., Parsons, E.C., Does, M.D.: Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed. 23(7), 745–56 (2010). doi:10.1002/nbm.1531CrossRefMATH
18.
Zurück zum Zitat Grebenkov, D.S.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)CrossRef Grebenkov, D.S.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)CrossRef
20.
Zurück zum Zitat Grebenkov, D.S.: Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures. J. Magn. Reson. 205(2), 181–195 (2010). doi:10.1016/j.jmr.2010.04.017CrossRef Grebenkov, D.S.: Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures. J. Magn. Reson. 205(2), 181–195 (2010). doi:10.1016/j.jmr.2010.04.017CrossRef
22.
Zurück zum Zitat Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)CrossRef Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)CrossRef
23.
Zurück zum Zitat Karlicek, R.F., Lowe, I.J.: A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients. J. Magn. Reson. 37, 75–91 (1980) Karlicek, R.F., Lowe, I.J.: A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients. J. Magn. Reson. 37, 75–91 (1980)
24.
Zurück zum Zitat Kenkre, V.M., Fukushima, E., Sheltraw, D.: Simple solutions of the Torrey-Bloch equations in the NMR study of molecular diffusion. J. Magn. Reson. 128, 62–69 (1997)CrossRef Kenkre, V.M., Fukushima, E., Sheltraw, D.: Simple solutions of the Torrey-Bloch equations in the NMR study of molecular diffusion. J. Magn. Reson. 128, 62–69 (1997)CrossRef
25.
Zurück zum Zitat Koay, C.G., Özarslan, E.: Conceptual foundations of diffusion in magnetic resonance. Concepts Magn. Reson. Part A 42A, 116–129 (2013)CrossRef Koay, C.G., Özarslan, E.: Conceptual foundations of diffusion in magnetic resonance. Concepts Magn. Reson. Part A 42A, 116–129 (2013)CrossRef
26.
Zurück zum Zitat Komlosh, M.E., Özarslan, E., Lizak, M.J., Horkay, F., Schram, V., Shemesh, N., Cohen, Y., Basser, P.J.: Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom. J. Magn. Reson. 208(1), 128–135 (2011). doi:10.1016/j.jmr.2010.10.014. http://dx.doi.org/10.1016/j.jmr.2010.10.014 Komlosh, M.E., Özarslan, E., Lizak, M.J., Horkay, F., Schram, V., Shemesh, N., Cohen, Y., Basser, P.J.: Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom. J. Magn. Reson. 208(1), 128–135 (2011). doi:10.1016/j.jmr.2010.10.014. http://​dx.​doi.​org/​10.​1016/​j.​jmr.​2010.​10.​014
27.
Zurück zum Zitat Laun, F.B.: Restricted diffusion in NMR in arbitrary inhomogeneous magnetic fields and an application to circular layers. J. Chem. Phys. 137(4), 044704 (2012). doi:10.1063/1.4736849CrossRef Laun, F.B.: Restricted diffusion in NMR in arbitrary inhomogeneous magnetic fields and an application to circular layers. J. Chem. Phys. 137(4), 044704 (2012). doi:10.1063/1.4736849CrossRef
28.
Zurück zum Zitat Laun, F.B., Kuder, T.A., Wetscherek, A., Stieltjes, B., Semmler, W.: NMR-based diffusion pore imaging. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2 Pt 1), 021906 (2012)CrossRef Laun, F.B., Kuder, T.A., Wetscherek, A., Stieltjes, B., Semmler, W.: NMR-based diffusion pore imaging. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2 Pt 1), 021906 (2012)CrossRef
29.
Zurück zum Zitat Meiboom, S., Gill, D.: Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958)CrossRef Meiboom, S., Gill, D.: Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958)CrossRef
30.
Zurück zum Zitat Mitra, P.P.: Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys. Rev. B 51(21), 15074–15078 (1995)CrossRef Mitra, P.P.: Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys. Rev. B 51(21), 15074–15078 (1995)CrossRef
31.
Zurück zum Zitat Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)CrossRef Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)CrossRef
35.
Zurück zum Zitat Özarslan, E., Basser, P.J., Shepherd, T.M., Thelwall, P.E., Vemuri, B.C., Blackband, S.J.: Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J. Magn. Reson. 183(2), 315–323 (2006). doi:10.1016/j.jmr.2006.08.009. http://dx.doi.org/10.1016/j.jmr.2006.08.009 Özarslan, E., Basser, P.J., Shepherd, T.M., Thelwall, P.E., Vemuri, B.C., Blackband, S.J.: Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J. Magn. Reson. 183(2), 315–323 (2006). doi:10.1016/j.jmr.2006.08.009. http://​dx.​doi.​org/​10.​1016/​j.​jmr.​2006.​08.​009
38.
Zurück zum Zitat Özarslan, E., Shemesh, N., Basser, P.J.: A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments. J. Chem. Phys. 130(10), 104702 (2009). doi:10.1063/1.3082078. http://dx.doi.org/10.1063/1.3082078 Özarslan, E., Shemesh, N., Basser, P.J.: A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments. J. Chem. Phys. 130(10), 104702 (2009). doi:10.1063/1.3082078. http://​dx.​doi.​org/​10.​1063/​1.​3082078
39.
Zurück zum Zitat Özarslan, E., Komlosh, M., Lizak, M., Horkay, F., Basser, P.: Double pulsed field gradient (double-PFG) MR imaging (MRI) as a means to measure the size of plant cells. Magn. Reson. Chem. 49, S79–S84 (2011). doi:10.1002/mrc.2797. http://dx.doi.org/10.1002/mrc.2797 Özarslan, E., Komlosh, M., Lizak, M., Horkay, F., Basser, P.: Double pulsed field gradient (double-PFG) MR imaging (MRI) as a means to measure the size of plant cells. Magn. Reson. Chem. 49, S79–S84 (2011). doi:10.1002/mrc.2797. http://​dx.​doi.​org/​10.​1002/​mrc.​2797
43.
Zurück zum Zitat Robertson, B.: Spin-echo decay of spins diffusing in a bounded region. Phys. Rev. 151, 273–277 (1966)CrossRef Robertson, B.: Spin-echo decay of spins diffusing in a bounded region. Phys. Rev. 151, 273–277 (1966)CrossRef
44.
Zurück zum Zitat Sen, P.N., André, A., Axelrod, S.: Spin echoes of nuclear magnetization diffusing in a constant magnetic field gradient and in a restricted geometry. J. Chem. Phys. 111, 6548–6555 (1999)CrossRef Sen, P.N., André, A., Axelrod, S.: Spin echoes of nuclear magnetization diffusing in a constant magnetic field gradient and in a restricted geometry. J. Chem. Phys. 111, 6548–6555 (1999)CrossRef
45.
Zurück zum Zitat Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRef Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRef
46.
Zurück zum Zitat Stepišnik, J.: Analysis of NMR self-diffusion measurements by a density matrix calculation. Physica B & C 104, 350–364 (1981)CrossRef Stepišnik, J.: Analysis of NMR self-diffusion measurements by a density matrix calculation. Physica B & C 104, 350–364 (1981)CrossRef
47.
Zurück zum Zitat Sukstanskii, A.L., Yablonskiy, D.A.: Effects of restricted diffusion on MR signal formation. J. Magn. Reson. 157(1), 92–105 (2002)CrossRef Sukstanskii, A.L., Yablonskiy, D.A.: Effects of restricted diffusion on MR signal formation. J. Magn. Reson. 157(1), 92–105 (2002)CrossRef
48.
Zurück zum Zitat Torrey, H.C.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563–565 (1956)CrossRef Torrey, H.C.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563–565 (1956)CrossRef
Metadaten
Titel
Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Function Framework, Path Integrals, and Parallels Between Them
verfasst von
Cem Yolcu
Evren Özarslan
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15090-1_1