Skip to main content
Erschienen in: Wireless Personal Communications 4/2022

11.05.2022

Dilated Deep Neural Architectures for Improving Retinal Vessel Extraction

verfasst von: V. Sathananthavathi, G. Indumathi

Erschienen in: Wireless Personal Communications | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Retinal vascular region is recognized as the promising anatomical region for the diagnosis of several commonly seen diseases including cardiovascular related and diabetes. In this paper we propose two novel deep neural architectures named as Dilated fully convolved convolutional neural network (FCNN) and dilated depth concatenated neural network (DCNN) to segment the retinal blood vessels. The proposed work is evaluated for both the proposed architectures with and without dilation. It is observed from the obtained results that dilation enhances the network performance. To eliminate the non-uniform illumination and low contrast differences effect the preprocessed images are used for training the architectures. The proposed methodologies are experimented on the two publicly available databases DRIVE and STARE database. The proposed dilated FCNN architecture can able to obtain high accuracy of about 95.39% which is high compared to the FCNN architecture. For the dilated DCNN architecture also, accuracy obtained is about 96.16% which is high compared to DCNN. The experimental results reveal the significance of dilation operation in improving the semantic segmentation of retinal blood vessels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Salazar-Gonzalez, A., Kaba, D., Li, Y., & Liu, X. (2014). Segmentation of the blood vessels and optic disk in retinal images. IEEE Journal of Biomedical and Health Informatics, 18(6), 1874–1886.CrossRef Salazar-Gonzalez, A., Kaba, D., Li, Y., & Liu, X. (2014). Segmentation of the blood vessels and optic disk in retinal images. IEEE Journal of Biomedical and Health Informatics, 18(6), 1874–1886.CrossRef
2.
Zurück zum Zitat Shahid, M., & Taj, I. A. (2018). Robust retinal vessel segmentation using vessel’s location map and Frangi enhancement filter. IET Image Processing, 12(4), 494–501.CrossRef Shahid, M., & Taj, I. A. (2018). Robust retinal vessel segmentation using vessel’s location map and Frangi enhancement filter. IET Image Processing, 12(4), 494–501.CrossRef
3.
Zurück zum Zitat Soomro, T. A., Khan, T. M., Khan, M. A. U., et al. (2018). Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IET Image Processing, 6, 3524–3533. Soomro, T. A., Khan, T. M., Khan, M. A. U., et al. (2018). Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IET Image Processing, 6, 3524–3533.
4.
Zurück zum Zitat Biswal, B., Pooja, T., & Bala Subrahmanyam, N. (2018). Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Processing, 12(3), 389–399.CrossRef Biswal, B., Pooja, T., & Bala Subrahmanyam, N. (2018). Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Processing, 12(3), 389–399.CrossRef
5.
Zurück zum Zitat Fraz, M. M., et al. (2011). Retinal vessel extraction using first-order derivativeof gaussian and morphological processing. In Advances in Visual Computing. Springer, pp. 410–420. Fraz, M. M., et al. (2011). Retinal vessel extraction using first-order derivativeof gaussian and morphological processing. In Advances in Visual Computing. Springer, pp. 410–420.
7.
Zurück zum Zitat Zhu, C., Zou, B., Zhao, R., Cui, J., Duan, X., Chen, Z., & Liang, Y. (2017). Retinal vessel segmentation in colour fundus images using extreme learning machine. Computerized Medical Imaging and Graphics, 55, 68–77.CrossRef Zhu, C., Zou, B., Zhao, R., Cui, J., Duan, X., Chen, Z., & Liang, Y. (2017). Retinal vessel segmentation in colour fundus images using extreme learning machine. Computerized Medical Imaging and Graphics, 55, 68–77.CrossRef
8.
Zurück zum Zitat Marín, D., Aquino, A., Gegúndez-Arias, M. E., & Bravo, J. M. (2011). A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants based features. IEEE Transactions on Medical Imaging, 30(1), 146–158.CrossRef Marín, D., Aquino, A., Gegúndez-Arias, M. E., & Bravo, J. M. (2011). A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants based features. IEEE Transactions on Medical Imaging, 30(1), 146–158.CrossRef
9.
Zurück zum Zitat Sathananthavathi, V., & Indumathi, G. (2018). BAT algorithm inspired retinal blood vessel segmentation. IET Image Processing, 12(11), 2075–2083.CrossRef Sathananthavathi, V., & Indumathi, G. (2018). BAT algorithm inspired retinal blood vessel segmentation. IET Image Processing, 12(11), 2075–2083.CrossRef
10.
Zurück zum Zitat Sumathi, T., Vivekanandan, P., & Balaji, R. (2018). Retinal vessel segmentation using neural network (RVSNN). Image Processing, 12(5), 669–678.CrossRef Sumathi, T., Vivekanandan, P., & Balaji, R. (2018). Retinal vessel segmentation using neural network (RVSNN). Image Processing, 12(5), 669–678.CrossRef
11.
Zurück zum Zitat Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651.CrossRef Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651.CrossRef
12.
Zurück zum Zitat Salem, S. A., Salem, N. M., & Nandi, A. K. (2007). Segmentation of retinal blood vessel using a novel clustering algorithm (RACAL) with a partial supervision strategy. Medical & Biological Engineering & Computing, 45(3), 261–273.CrossRef Salem, S. A., Salem, N. M., & Nandi, A. K. (2007). Segmentation of retinal blood vessel using a novel clustering algorithm (RACAL) with a partial supervision strategy. Medical & Biological Engineering & Computing, 45(3), 261–273.CrossRef
13.
Zurück zum Zitat Sathananthavathi, V., Indumathi, G., Mahiya, R., & Priyadarshini, S. (2021). Improvement of thin retinal vessel extraction using mean matting method. International Journal of Imaging Systems and Technology, 31, 1455–1467.CrossRef Sathananthavathi, V., Indumathi, G., Mahiya, R., & Priyadarshini, S. (2021). Improvement of thin retinal vessel extraction using mean matting method. International Journal of Imaging Systems and Technology, 31, 1455–1467.CrossRef
14.
Zurück zum Zitat Orlando, J. I., Prokofyeva, E., & Blaschko, M. B. (2017). A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Transactions on Biomedical Engineering, 64(1), 16–27.CrossRef Orlando, J. I., Prokofyeva, E., & Blaschko, M. B. (2017). A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Transactions on Biomedical Engineering, 64(1), 16–27.CrossRef
15.
Zurück zum Zitat Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., & Yang, G. (2015). Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149, 708–717.CrossRef Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., & Yang, G. (2015). Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149, 708–717.CrossRef
17.
Zurück zum Zitat Wang, Xiaohong, Jiang, Xudong, & Ren, Jianfeng. (2019). Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 88, 331–341.CrossRef Wang, Xiaohong, Jiang, Xudong, & Ren, Jianfeng. (2019). Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 88, 331–341.CrossRef
18.
Zurück zum Zitat Yan, Zengqiang, Yang, Xin, & Cheng, Kwang-Ting. (2018). Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9), 1912–1923.CrossRef Yan, Zengqiang, Yang, Xin, & Cheng, Kwang-Ting. (2018). Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9), 1912–1923.CrossRef
19.
Zurück zum Zitat Kai, Hu., Zhang, Zhenzhen, Niu, Xiaorui, Zhang, Yuan, Cao, Chunhong, Xiao, Fen, & Gao, Xieping. (2018). Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing, 309, 179–191.CrossRef Kai, Hu., Zhang, Zhenzhen, Niu, Xiaorui, Zhang, Yuan, Cao, Chunhong, Xiao, Fen, & Gao, Xieping. (2018). Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing, 309, 179–191.CrossRef
20.
Zurück zum Zitat Fu, H., Xu, Y., Kee Wong, D. W., & Liu, J. (2016). Retinal vessel segmentation via deep learning and conditional random field, In Proceedings MICCAI, pp. 132-139. Fu, H., Xu, Y., Kee Wong, D.  W., & Liu, J. (2016). Retinal vessel segmentation via deep learning and conditional random field, In Proceedings MICCAI, pp. 132-139.
21.
Zurück zum Zitat Jiang, Z. Zhang, H., Wang, Y., & Ko, S.-B. (2018). Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 68, 1–15.CrossRef Jiang, Z. Zhang, H., Wang, Y., & Ko, S.-B. (2018). Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 68, 1–15.CrossRef
22.
Zurück zum Zitat Ronneberger, O., Fischer, P., Brox, T., (2015). U-net Convolutional neural networks for biomedical image segmentation, In Proceeding MICCAI, pp. 234-241 Ronneberger, O., Fischer, P., Brox, T., (2015). U-net Convolutional neural networks for biomedical image segmentation, In Proceeding MICCAI, pp. 234-241
23.
Zurück zum Zitat Dasgupta, A., Singh, S. (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation, In Proceeding ISBI, pp. 18-21. Dasgupta, A., Singh, S. (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation, In Proceeding ISBI, pp. 18-21.
25.
Zurück zum Zitat Oliveira, Americo, Carlos, Sergio Pereira, & Silva, A. (2018). Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications 112(1), 229–242.CrossRef Oliveira, Americo, Carlos, Sergio Pereira, & Silva, A. (2018). Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications 112(1), 229–242.CrossRef
26.
Zurück zum Zitat Sathananthavathi, V., & Indumathi, G. (2020). Parallel architecture of fully convolved neural network for retinal vessel segmentation. Journal of Digital Imaging, 33(1), 168–180.CrossRef Sathananthavathi, V., & Indumathi, G. (2020). Parallel architecture of fully convolved neural network for retinal vessel segmentation. Journal of Digital Imaging, 33(1), 168–180.CrossRef
27.
Zurück zum Zitat Tian, C., Fang, T., Fan, Y., & Wu, W. (2020). Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybernetics and Biomedical Engineering, 40(2), 583–595.CrossRef Tian, C., Fang, T., Fan, Y., & Wu, W. (2020). Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybernetics and Biomedical Engineering, 40(2), 583–595.CrossRef
28.
Zurück zum Zitat Atli, I., & Gedik, O. S. (2021). Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 24(2), 271–283.CrossRef Atli, I., & Gedik, O. S. (2021). Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 24(2), 271–283.CrossRef
29.
Zurück zum Zitat Uysal, E., & Guraksin, G. E. (2021). Computer-aided retinal vessel segmentation in retinal images: Convolutional neural networks. Multimedia Tools and Applications, 80, 3505–3528.CrossRef Uysal, E., & Guraksin, G. E. (2021). Computer-aided retinal vessel segmentation in retinal images: Convolutional neural networks. Multimedia Tools and Applications, 80, 3505–3528.CrossRef
33.
Zurück zum Zitat Staal, J. J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23, 501–509.CrossRef Staal, J. J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23, 501–509.CrossRef
34.
Zurück zum Zitat Hoover, A., Kouznetsova, V., & Goldbaum, M. (2000). Locating Blood Vessels in Retinal Images by Piece-wise Threhsold Probing of a Matched Filter Response. IEEE Transactions on Medical Imaging, 19(3), 203–210.CrossRef Hoover, A., Kouznetsova, V., & Goldbaum, M. (2000). Locating Blood Vessels in Retinal Images by Piece-wise Threhsold Probing of a Matched Filter Response. IEEE Transactions on Medical Imaging, 19(3), 203–210.CrossRef
35.
Zurück zum Zitat Marin, Diego, Aquino, Arturo, Gegundez-Arias, Manuel Emilio, & Bravo, Jose Manuel. (2011). A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions On Medical Imaging, 30(1), 146–158. https://doi.org/10.1109/TMI.2010.2064333.CrossRef Marin, Diego, Aquino, Arturo, Gegundez-Arias, Manuel Emilio, & Bravo, Jose Manuel. (2011). A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions On Medical Imaging, 30(1), 146–158. https://​doi.​org/​10.​1109/​TMI.​2010.​2064333.CrossRef
36.
Zurück zum Zitat Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., & Barman, S. (2012). A, An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 59(9), 2538–2548.CrossRef Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., & Barman, S. (2012). A, An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 59(9), 2538–2548.CrossRef
Metadaten
Titel
Dilated Deep Neural Architectures for Improving Retinal Vessel Extraction
verfasst von
V. Sathananthavathi
G. Indumathi
Publikationsdatum
11.05.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09728-5

Weitere Artikel der Ausgabe 4/2022

Wireless Personal Communications 4/2022 Zur Ausgabe

Neuer Inhalt