Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Dimensional Aspects of Almost Periodic Dynamics

verfasst von : Nikolay Kuznetsov, Volker Reitmann

Erschienen in: Attractor Dimension Estimates for Dynamical Systems: Theory and Computation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The first part (Sects. 4.2, 4.3, 4.5 and 4.6) of the present chapter contains several approaches to the investigation of the Fourier spectrum of almost periodic solutions to various differential equations. The core element here is the Cartwright theorem [6] that links the topological dimension of the orbit closure of an almost periodic flow and the algebraic dimension of its frequency module (Theorem 4.8). The next step is an extension of this theorem to non-autonomous differential equations (Theorem 4.11) originally presented in [7]. Applications of Cartwright’s theorems are given for almost periodic ODEs based on the approach due to R. A. Smith (Theorem 4.12) and for DDEs based on results of Mallet-Paret from [16] (Theorem 4.14). In Sect. 4.7 we develop a method for studying fractal dimensions of forced almost periodic oscillations using some kind of recurrence properties. This approach differs from the one due to Douady and Oesterlé and highly relies on almost periodicity. Some fundamental ideas firstly appeared in the works of Naito (see [17, 18]) and then were developed in [1, 2]. In Sect. 4.8 we study forced almost periodic oscillations in Chua’s circuit and compare the analytical upper estimates of the fractal dimension of their trajectory closures with numerical simulations given by the standard box-counting algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
That can be regarded as estimation of the fractal dimension of minimal sets consisting of almost periodic orbits of skew-product flows which is an extension of an almost periodic minimal flow.
 
2
That is, the mentioned mapping is an isomorphism of groups and a homeomorphism of topological spaces.
 
3
Here by \(\widehat{\mathcal {H}(u)} \cong {\text {mod}}_{\mathbb {Z}}(u)\) we mean a group isomorphism. In general, it is not a homeomorphism since the character group \(\widehat{\mathcal {H}(u)}\) is discrete and \({\text {mod}}_{\mathbb {Z}}(u)\) can be a dense subgroup of \(\mathbb {R}\).
 
4
Note that at the current moment we know nothing about the number of variables of \(\varPhi \) so we do not exclude the case when this number may be infinite.
 
5
For example, if Q is the least common multiple of the denominators of all \(r_{j,k}\) and \(r^{*}_{l,k}\) for \(1 \le j \le J^{+}, 1 \le l \le L^{+}, 1 \le k \le N^{+}\).
 
6
We use the implementation of the method within the procedure solve_ivp of package scipy.integrate of programming language Python 3.7.1. Parameter max_step of the procedure is chosen to be \(2^{-9}\).
 
Literatur
1.
Zurück zum Zitat Anikushin, M.M.: Dimension theory approach to the complexity of almost periodic trajectories. Int. J. Evol. Equ. 10(3–4), 215–232 (2017) Anikushin, M.M.: Dimension theory approach to the complexity of almost periodic trajectories. Int. J. Evol. Equ. 10(3–4), 215–232 (2017)
2.
Zurück zum Zitat Anikushin, M.M.: On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations. Vestn. St. Petersburg Univ. Math. 52(3) (2019) Anikushin, M.M.: On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations. Vestn. St. Petersburg Univ. Math. 52(3) (2019)
3.
Zurück zum Zitat Anikushin, M.M.: On the Smith reduction theorem for almost periodic ODEs satisfying the squeezing property. Russ. J. Nonlinear Dyn. 15(1), 97–108 (2019)MathSciNetMATH Anikushin, M.M.: On the Smith reduction theorem for almost periodic ODEs satisfying the squeezing property. Russ. J. Nonlinear Dyn. 15(1), 97–108 (2019)MathSciNetMATH
4.
Zurück zum Zitat Anikushin, M.M., Reitmann, V., Romanov, A.O.: Analytical and numerical estimates of fractal dimensions of forced quasi-periodic oscillations in control systems. Electron. J. Diff. Equ. Contr. Process. 85(2) (2019) (Russian) Anikushin, M.M., Reitmann, V., Romanov, A.O.: Analytical and numerical estimates of fractal dimensions of forced quasi-periodic oscillations in control systems. Electron. J. Diff. Equ. Contr. Process. 85(2) (2019) (Russian)
5.
Zurück zum Zitat Burkin, I.M., Yakubovich, V.A.: Frequency conditions of existence of two almost periodic solutions in a nonlinear control system. Sibirsk. Mat. Zh. 16(5), 916–924 (1975) (Russian); English transl. Siberian Math. J. 16(5), 699–705 (1975) Burkin, I.M., Yakubovich, V.A.: Frequency conditions of existence of two almost periodic solutions in a nonlinear control system. Sibirsk. Mat. Zh. 16(5), 916–924 (1975) (Russian); English transl. Siberian Math. J. 16(5), 699–705 (1975)
6.
Zurück zum Zitat Cartwright, M.L.: Almost periodic flows and solutions of differential equations. Proc. Lond. Math. Soc. 17, 355–380 (1967)MathSciNetCrossRef Cartwright, M.L.: Almost periodic flows and solutions of differential equations. Proc. Lond. Math. Soc. 17, 355–380 (1967)MathSciNetCrossRef
7.
Zurück zum Zitat Cartwright, M.L.: Almost periodic differential equations and almost periodic flows. J. Diff. Equ. 5(1), 167–181 (1969)MathSciNetCrossRef Cartwright, M.L.: Almost periodic differential equations and almost periodic flows. J. Diff. Equ. 5(1), 167–181 (1969)MathSciNetCrossRef
8.
Zurück zum Zitat Fink, A.M.: Almost Periodic Differential Equations. Springer (2006) Fink, A.M.: Almost Periodic Differential Equations. Springer (2006)
9.
Zurück zum Zitat Glazier, J.A., Libchaber, A.: Quasi-periodicity and dynamical systems: an experimentalist’s view. IEEE Trans. Circuits Syst. 35(7), 790–809 (1988)MathSciNetCrossRef Glazier, J.A., Libchaber, A.: Quasi-periodicity and dynamical systems: an experimentalist’s view. IEEE Trans. Circuits Syst. 35(7), 790–809 (1988)MathSciNetCrossRef
10.
Zurück zum Zitat Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002) Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002)
11.
Zurück zum Zitat Hilmy, G.F.: On a property of minimal sets. Dokl. Akad. Nauk SSSR 14, 261–262 (1937). (Russian) Hilmy, G.F.: On a property of minimal sets. Dokl. Akad. Nauk SSSR 14, 261–262 (1937). (Russian)
12.
Zurück zum Zitat Kalinin, Y.N., Reitmann, V.: Almost periodic solutions in control systems with monotone nonlinearities. Electron. J. Diff. Equ. Contr. Process. 4, 40–68 (2012) Kalinin, Y.N., Reitmann, V.: Almost periodic solutions in control systems with monotone nonlinearities. Electron. J. Diff. Equ. Contr. Process. 4, 40–68 (2012)
13.
Zurück zum Zitat Khinchin, A.I.: Continued Fractions. P. Noordhoff (1963) Khinchin, A.I.: Continued Fractions. P. Noordhoff (1963)
14.
Zurück zum Zitat Krasnoselśkii, M.A., Burd, V.S., Kolesov, Y.S: Nonlinear Almost Periodic Oscillations. Wiley, New York (1973) Krasnoselśkii, M.A., Burd, V.S., Kolesov, Y.S: Nonlinear Almost Periodic Oscillations. Wiley, New York (1973)
15.
Zurück zum Zitat Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge (1982) Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge (1982)
16.
Zurück zum Zitat Mallet-Paret, J.: Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Diff. Equ. 22(2), 331–348 (1976)MathSciNetCrossRef Mallet-Paret, J.: Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Diff. Equ. 22(2), 331–348 (1976)MathSciNetCrossRef
17.
Zurück zum Zitat Naito, K.: On the almost periodicity of solutions of a reaction diffusion system. J. Diff. Equ. 44(1), 9–20 (1982)MathSciNetCrossRef Naito, K.: On the almost periodicity of solutions of a reaction diffusion system. J. Diff. Equ. 44(1), 9–20 (1982)MathSciNetCrossRef
18.
Zurück zum Zitat Naito, K.: Dimension estimate of almost periodic attractors by simultaneous Diophantine approximation. J. Diff. Equ. 141(1), 179–200 (1997)MathSciNetCrossRef Naito, K.: Dimension estimate of almost periodic attractors by simultaneous Diophantine approximation. J. Diff. Equ. 141(1), 179–200 (1997)MathSciNetCrossRef
19.
Zurück zum Zitat Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations, vol. 55. Springer Science & Business Media (2012) Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations, vol. 55. Springer Science & Business Media (2012)
20.
Zurück zum Zitat Pliss, V.A.: Integral Sets of Periodic Systems of Differential Equations. Nauka, Moscow (1977). (Russian) Pliss, V.A.: Integral Sets of Periodic Systems of Differential Equations. Nauka, Moscow (1977). (Russian)
21.
Zurück zum Zitat Pontryagin, L.S.: Topological Groups, Moscow (1973) (Russian) Pontryagin, L.S.: Topological Groups, Moscow (1973) (Russian)
22.
Zurück zum Zitat Reitmann, V.: Frequency domain conditions for the existence of Bohr almost periodic solutions in evolution equations. IFAC Proceedings Volumes, St. Petersburg, 40(14), 240–244 (2007) Reitmann, V.: Frequency domain conditions for the existence of Bohr almost periodic solutions in evolution equations. IFAC Proceedings Volumes, St. Petersburg, 40(14), 240–244 (2007)
23.
Zurück zum Zitat Robinson, J.C.: Inertial manifolds and the cone condition. Dyn. Syst. Appl. 2, 311–330 (1993)MathSciNetMATH Robinson, J.C.: Inertial manifolds and the cone condition. Dyn. Syst. Appl. 2, 311–330 (1993)MathSciNetMATH
24.
Zurück zum Zitat Samoilenko, A.M.: Elements of the Mathematical Theory of Multi-Frequency Oscillations. Springer Science & Business Media (2012) Samoilenko, A.M.: Elements of the Mathematical Theory of Multi-Frequency Oscillations. Springer Science & Business Media (2012)
25.
Zurück zum Zitat Siegel, C.L.: Lectures on the Geometry of Numbers. Springer Science & Business Media (2013) Siegel, C.L.: Lectures on the Geometry of Numbers. Springer Science & Business Media (2013)
26.
Zurück zum Zitat Smith, R.A.: Massera’s convergence theorem for periodic nonlinear differential equations. J. Math. Anal. Appl. 120(2), 679–708 (1986)MathSciNetCrossRef Smith, R.A.: Massera’s convergence theorem for periodic nonlinear differential equations. J. Math. Anal. Appl. 120(2), 679–708 (1986)MathSciNetCrossRef
27.
Zurück zum Zitat Stankevich, N.V., Kuznetsov, N.V., Leonov, G.A., Chua, L.O.: Scenario of the birth of hidden attractors in the Chua circuit. Int. J. Bifurc. Chaos 27(12), 1–18 (2017)MathSciNetCrossRef Stankevich, N.V., Kuznetsov, N.V., Leonov, G.A., Chua, L.O.: Scenario of the birth of hidden attractors in the Chua circuit. Int. J. Bifurc. Chaos 27(12), 1–18 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Suresh, K., Prasad, A., Thamilmaran, K.: Birth of strange nonchaotic attractors through formation and merging of bubbles in a quasiperiodically forced Chua’s oscillator. Phys. Lett. A 377(8), 612–621 (2013)MathSciNetCrossRef Suresh, K., Prasad, A., Thamilmaran, K.: Birth of strange nonchaotic attractors through formation and merging of bubbles in a quasiperiodically forced Chua’s oscillator. Phys. Lett. A 377(8), 612–621 (2013)MathSciNetCrossRef
29.
Zurück zum Zitat Yakubovich, V.A.: Method of matrix inequalities in theory of nonlinear control systems stability. I. Forced oscillations absolute stability. Avtom. Telemekh. 25(7), 1017–1029 (1964) Yakubovich, V.A.: Method of matrix inequalities in theory of nonlinear control systems stability. I. Forced oscillations absolute stability. Avtom. Telemekh. 25(7), 1017–1029 (1964)
30.
Zurück zum Zitat Zinchenko, I.L.: The group of characters on the closure of the almost periodic trajectory of an autonomous system of differential equations. Diff. Urav. 24(6), 1043–1045 (1988) (Russian) Zinchenko, I.L.: The group of characters on the closure of the almost periodic trajectory of an autonomous system of differential equations. Diff. Urav. 24(6), 1043–1045 (1988) (Russian)
31.
Zurück zum Zitat Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (2002) Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (2002)
Metadaten
Titel
Dimensional Aspects of Almost Periodic Dynamics
verfasst von
Nikolay Kuznetsov
Volker Reitmann
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-50987-3_4