Skip to main content

2023 | OriginalPaper | Buchkapitel

Dimensionless Continuum Model of Vertical Free Vibration of Spatial Self-anchored Suspension Bridge

verfasst von : Jianling Zhao, Fan Wang, Xiaoming Wang, Pei Tao, Pengfei Li

Erschienen in: Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the spatial coupling of main cable-hanger and the internal self-balance between subsystems, the free vibration continuum model of spatial self-anchored suspension bridge is difficult to establish, which limits the acquisition and identification of its dynamic characteristics. In this paper, the vertical free vibration continuum model considering hanger tension is established by integrating the vibration form deflection theory and the deformation and compatibility equation of main cable-hanger-beam, which is dimensionless to identify the characteristic parameters controlling dynamic characteristics; The shape function of main cable and girder satisfying the geometric and mechanical boundary is constructed, and the model is transformed into matrix form by Galerkin method to solve the modal frequency and vibration mode; Numerical examples and finite element models are used to verify the universality and accuracy of the continuum model, and the sensitivity of key stiffness characteristic parameters is analyzed. The results show that the relative elastic bending stiffness of the main girder significantly affects the modal frequency, and the elastic stiffness of the main cable only slightly affects the symmetrical modal frequency; The elastic axial stiffness of the hanger is sensitive to the relative elastic bending stiffness of the main girder. Whether the hanger tension is considered or not will significantly affect the high-order modal frequency, especially the antisymmetric mode. In conclusion, the continuum model considering hanger tension is more accurate, which can provide an effective reference for the preliminary design of the project and the real-time planning of dynamic disaster prevention and control scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Ghaffar, A.M.: Suspension bridge vibration: continuum formulation. J. Eng. Mech. Div. 108(6), 1215–1232 (1982)CrossRef Abdel-Ghaffar, A.M.: Suspension bridge vibration: continuum formulation. J. Eng. Mech. Div. 108(6), 1215–1232 (1982)CrossRef
Zurück zum Zitat Bleich, F., McCullough, C.B., Rosecrans, R., et al.: The Mathematical Theory of Vibration in Suspension Bridges. US Government Printing Office, Washington (1950) Bleich, F., McCullough, C.B., Rosecrans, R., et al.: The Mathematical Theory of Vibration in Suspension Bridges. US Government Printing Office, Washington (1950)
Zurück zum Zitat Chuanxi, L., Hongjun, K., Haibo, L., et al.: Determination of finished bridge state of self-anchored suspension Brjdge with spatial cables. Eng. Mech. 27(5), 137–146 (2010) Chuanxi, L., Hongjun, K., Haibo, L., et al.: Determination of finished bridge state of self-anchored suspension Brjdge with spatial cables. Eng. Mech. 27(5), 137–146 (2010)
Zurück zum Zitat Chuncheng, L., Zhe, Z., Lei, S., et al.: Theoretical study of vertical free vibrations of concrete self-anchored suspension bridges. Eng. Mech. 22(4), 126–130 (2005) Chuncheng, L., Zhe, Z., Lei, S., et al.: Theoretical study of vertical free vibrations of concrete self-anchored suspension bridges. Eng. Mech. 22(4), 126–130 (2005)
Zurück zum Zitat Enrique Luco, J., Turmo, J.: Linear vertical vibrations of suspension bridges: a review of continuum models and some new results. Soil Dyn. Earthq. Eng. 30(9), 769–781 (2010)CrossRef Enrique Luco, J., Turmo, J.: Linear vertical vibrations of suspension bridges: a review of continuum models and some new results. Soil Dyn. Earthq. Eng. 30(9), 769–781 (2010)CrossRef
Zurück zum Zitat Gwon, S.-G., Choi, D.-H.: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model. Eng. Struct. 161, 250–264 (2018)CrossRef Gwon, S.-G., Choi, D.-H.: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model. Eng. Struct. 161, 250–264 (2018)CrossRef
Zurück zum Zitat Gwon, S.-G., Choi, D.-H.: Continuum model for static and dynamic analysis of suspension bridges with a floating girder. J. Bridge Eng. 23(10), 04018079.1–04018079.13 (2018) Gwon, S.-G., Choi, D.-H.: Continuum model for static and dynamic analysis of suspension bridges with a floating girder. J. Bridge Eng. 23(10), 04018079.1–04018079.13 (2018)
Zurück zum Zitat Hayashikawa, T., Watanabe, N.: Vertical vibration in Timoshenko beam suspension bridges. J. Eng. Mech. 110(3), 341–356 (1984) Hayashikawa, T., Watanabe, N.: Vertical vibration in Timoshenko beam suspension bridges. J. Eng. Mech. 110(3), 341–356 (1984)
Zurück zum Zitat Jose Turmo, J., Luco, E.: Effect of hanger flexibility on dynamic response of suspension bridges. J. Eng. Mech. 136(12), 1444–1459 (2010) Jose Turmo, J., Luco, E.: Effect of hanger flexibility on dynamic response of suspension bridges. J. Eng. Mech. 136(12), 1444–1459 (2010)
Zurück zum Zitat Jun, G., Shenghong, L., Song, G., et al.: Estimation formula of vertical bending vibration fundamental frequency of self-anchored single tower suspension bridge. J. Chongqing Jiaotong Univ. (Natural Sciences) 38(5), 27–32 (2019) Jun, G., Shenghong, L., Song, G., et al.: Estimation formula of vertical bending vibration fundamental frequency of self-anchored single tower suspension bridge. J. Chongqing Jiaotong Univ. (Natural Sciences) 38(5), 27–32 (2019)
Zurück zum Zitat Jung, M.-R., Shin, S.-U., Mario, M., Attard, et al.: Deflection theory for self-anchored suspension bridges under live load. J. Bridge Eng. 20(7), 04014093 (2015) Jung, M.-R., Shin, S.-U., Mario, M., Attard, et al.: Deflection theory for self-anchored suspension bridges under live load. J. Bridge Eng. 20(7), 04014093 (2015)
Zurück zum Zitat Juntao, K., Min, Y., Tongmin, W.: Parametric analysis of dynamic performance of completion state of long span self-anchored suspension bridge. Bridge Constr. 43(6), 64–70 (2013) Juntao, K., Min, Y., Tongmin, W.: Parametric analysis of dynamic performance of completion state of long span self-anchored suspension bridge. Bridge Constr. 43(6), 64–70 (2013)
Zurück zum Zitat Kim, M.Y., Kwon, S.D., Kim, N.I.: Analytical and numerical study on free vertical vibration of shear-flexible suspension bridges. J. Sound Vib. 238(1), 65–84 (2000)CrossRef Kim, M.Y., Kwon, S.D., Kim, N.I.: Analytical and numerical study on free vertical vibration of shear-flexible suspension bridges. J. Sound Vib. 238(1), 65–84 (2000)CrossRef
Zurück zum Zitat Konstantakopoulos, T.G., Raftoyiannis, I.G., Michaltsos, G.T.: Reduced formulae for vibration of continuous beams with application on moving loads. Open Mech. J. 6(1), 1–7 (2012)CrossRef Konstantakopoulos, T.G., Raftoyiannis, I.G., Michaltsos, G.T.: Reduced formulae for vibration of continuous beams with application on moving loads. Open Mech. J. 6(1), 1–7 (2012)CrossRef
Zurück zum Zitat Lei, S., Chuncheng, L., Zhe, Z.: Basic differential equation deductive of the self-anchored suspension bridge. J. Harbin Inst. Technol. 36(12), 1733–1735 (2004) Lei, S., Chuncheng, L., Zhe, Z.: Basic differential equation deductive of the self-anchored suspension bridge. J. Harbin Inst. Technol. 36(12), 1733–1735 (2004)
Zurück zum Zitat Li, T., Liu, Z.: An improved continuum model for determining the behavior of suspension bridges during construction. Autom. Constr. 127, 103715 (2021)CrossRef Li, T., Liu, Z.: An improved continuum model for determining the behavior of suspension bridges during construction. Autom. Constr. 127, 103715 (2021)CrossRef
Zurück zum Zitat Xiaoming, W., Xianwu, H., Ruifang, D.: Initial equilibrium state analysis of suspension bridge with spatial cables based on Steffens-Newton algorithm. Chin. J. Comput. Mech. 28(5), 717–722 (2011) Xiaoming, W., Xianwu, H., Ruifang, D.: Initial equilibrium state analysis of suspension bridge with spatial cables based on Steffens-Newton algorithm. Chin. J. Comput. Mech. 28(5), 717–722 (2011)
Zurück zum Zitat Xiaoming, W., Shuanhai, H., Ruifang, D.: Hanger tensioning process analysis of self-anchored suspension bridge with spatial cables. Eng. Mech. 33(10), 164–172 (2016) Xiaoming, W., Shuanhai, H., Ruifang, D.: Hanger tensioning process analysis of self-anchored suspension bridge with spatial cables. Eng. Mech. 33(10), 164–172 (2016)
Zurück zum Zitat Xiaoyu, Z., Laijun, L., Tao, S., et al.: Frequency estimation formulas of vertical vibration for self-anchored suspension bridge with double-tower considering tower stiffness. J. Jiangsu Univ. (Natural Science Edition) 38(3), 355–360 (2017) Xiaoyu, Z., Laijun, L., Tao, S., et al.: Frequency estimation formulas of vertical vibration for self-anchored suspension bridge with double-tower considering tower stiffness. J. Jiangsu Univ. (Natural Science Edition) 38(3), 355–360 (2017)
Zurück zum Zitat Xuhong, Z., Jun, W., Jin, D.: Mechanical analysis for long-span self-anchored suspension bridges. China Civil Eng. J. 39(2), 42–45, 65 (2006) Xuhong, Z., Jun, W., Jin, D.: Mechanical analysis for long-span self-anchored suspension bridges. China Civil Eng. J. 39(2), 42–45, 65 (2006)
Metadaten
Titel
Dimensionless Continuum Model of Vertical Free Vibration of Spatial Self-anchored Suspension Bridge
verfasst von
Jianling Zhao
Fan Wang
Xiaoming Wang
Pei Tao
Pengfei Li
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7331-4_80