Skip to main content

2025 | OriginalPaper | Buchkapitel

Direct Approach for Modelling a Class of Fractional-Order System Using Two Generating Functions

verfasst von : Wandarisa Sungoh, Jaydeep Swarnakar

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, two second-order generating functions have been suggested to model a class of fractional-order system (FOS) in z domain using direct discretization method. The generating functions named as Goswami et al. operator (Method-I) and Mekhnache et al. operator (Method-II) are employed to obtain the approximated models of fractional-order differentiator (FOD) of one-fourth order and one-fifth order via continued fraction expansion (CFE). Further, these two methods have been used to model another two FOSs taken from the literature. Frequency responses of the approximated models show that Method-I has produced less root mean square error (RMSE) than Method-II and hence appears to be more effective to approximate the FOS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mıshra SK (2019) Design and realization of fractional systems for signal processing applications. Unıversıty of Delhi Mıshra SK (2019) Design and realization of fractional systems for signal processing applications. Unıversıty of Delhi
2.
Zurück zum Zitat Oprzedkiewicz K, Rosol M, Zeglen-Wlodarczyk J (2021) The frequency and real-time properties of the microcontroller implementation of fractional-order PID controller. Electronics 10(5):524CrossRef Oprzedkiewicz K, Rosol M, Zeglen-Wlodarczyk J (2021) The frequency and real-time properties of the microcontroller implementation of fractional-order PID controller. Electronics 10(5):524CrossRef
3.
Zurück zum Zitat Bertsias P, Psychalinos C, Elwakil A, Safari L, Minaei S (2019) Design and application examples of CMOS fractional-order differentiators and integrators. Microelectron J 83:155–167CrossRef Bertsias P, Psychalinos C, Elwakil A, Safari L, Minaei S (2019) Design and application examples of CMOS fractional-order differentiators and integrators. Microelectron J 83:155–167CrossRef
4.
Zurück zum Zitat Herencsar N, Kartci A, Yildiz HA, Sotner R, Dvorak J, Kubanek D, Jerabek J, Koton J (2019) Comparative study of op-Amp-based integrators suitable for fractional-order controller design. In: Proceedings of 42nd international conference on telecommunications and signal processing (TSP). IEEE, Budapest, Hungary, pp 740–743 Herencsar N, Kartci A, Yildiz HA, Sotner R, Dvorak J, Kubanek D, Jerabek J, Koton J (2019) Comparative study of op-Amp-based integrators suitable for fractional-order controller design. In: Proceedings of 42nd international conference on telecommunications and signal processing (TSP). IEEE, Budapest, Hungary, pp 740–743
5.
Zurück zum Zitat Sankranti SR, Battula TK, Veera MR (2015) Design and implementation of first order digital differentiators at microwave frequencies. Am J Sig Process 5(3):56–58 Sankranti SR, Battula TK, Veera MR (2015) Design and implementation of first order digital differentiators at microwave frequencies. Am J Sig Process 5(3):56–58
6.
Zurück zum Zitat Caponetto R, Tomasello V, Lino P, Maione G (2016) Design and efficient implementation of digital non-integer order controllers for electro-mechanical systems. J Vib Control 22(9):2196–2210CrossRef Caponetto R, Tomasello V, Lino P, Maione G (2016) Design and efficient implementation of digital non-integer order controllers for electro-mechanical systems. J Vib Control 22(9):2196–2210CrossRef
7.
Zurück zum Zitat Swarnakar J, Sungoh W (2020) Rational approximation of fractional-order system with multiple fractional powered terms-a comparative study. In: Pandian A, Ntalianis KR (eds) Intelligent computing, information and control systems. Advances in intelligent systems and computing, vol 1039. Springer, Cham, pp 30–37 Swarnakar J, Sungoh W (2020) Rational approximation of fractional-order system with multiple fractional powered terms-a comparative study. In: Pandian A, Ntalianis KR (eds) Intelligent computing, information and control systems. Advances in intelligent systems and computing, vol 1039. Springer, Cham, pp 30–37
8.
Zurück zum Zitat Sungoh W, Swarnakar J (2023) Modelling of fractional-order differentiator: a comparative study. In: Dhar S, Do DT, Sur SN, Liu CM (eds) Advances in communication, devices and networking. Lecture notes in electrical engineering, vol 1037. Springer, Singapore, pp 577–584 Sungoh W, Swarnakar J (2023) Modelling of fractional-order differentiator: a comparative study. In: Dhar S, Do DT, Sur SN, Liu CM (eds) Advances in communication, devices and networking. Lecture notes in electrical engineering, vol 1037. Springer, Singapore, pp 577–584
9.
Zurück zum Zitat Deniz FN, Alagoz BB, Tan N, Koseoglu M (2020) Revisiting four approximation methods for fractional order transfer function implementations: stability preservation, time and frequency response matching analyses. Annu Rev Control 49:239–257MathSciNetCrossRef Deniz FN, Alagoz BB, Tan N, Koseoglu M (2020) Revisiting four approximation methods for fractional order transfer function implementations: stability preservation, time and frequency response matching analyses. Annu Rev Control 49:239–257MathSciNetCrossRef
10.
Zurück zum Zitat Yadav R, Gupta M (2015) Approximations of higher-order fractional differentiators and integrators using indirect discretization. Turk J Electr Eng Comput Sci 23(3):666–680CrossRef Yadav R, Gupta M (2015) Approximations of higher-order fractional differentiators and integrators using indirect discretization. Turk J Electr Eng Comput Sci 23(3):666–680CrossRef
11.
Zurück zum Zitat Chen Y, Vinagre BM, Podlubny I (2004) Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn 38:155–170MathSciNetCrossRef Chen Y, Vinagre BM, Podlubny I (2004) Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn 38:155–170MathSciNetCrossRef
12.
Zurück zum Zitat Jain M, Gupta M (2020) Design of fractional order recursive digital differintegrators using different approximation techniques. Int J Intell Syst Appl 12(1):151–215 Jain M, Gupta M (2020) Design of fractional order recursive digital differintegrators using different approximation techniques. Int J Intell Syst Appl 12(1):151–215
13.
Zurück zum Zitat Zhang Q, Song B, Zhao H, Zhang J (2017) Discretization of fractional order differentiator and integrator with different fractional orders. Intell Control Autom 8:75–85CrossRef Zhang Q, Song B, Zhao H, Zhang J (2017) Discretization of fractional order differentiator and integrator with different fractional orders. Intell Control Autom 8:75–85CrossRef
14.
Zurück zum Zitat Varshney P, Gupta M, Visweswaran GS (2009) First and higher order operator based fractional order differentiator and integrator models. In: TENCON 2009–2009 IEEE region 10 conference. IEEE, Singapore, pp 1–6 Varshney P, Gupta M, Visweswaran GS (2009) First and higher order operator based fractional order differentiator and integrator models. In: TENCON 2009–2009 IEEE region 10 conference. IEEE, Singapore, pp 1–6
15.
Zurück zum Zitat Goswami OP, Shukla A, Kumar M (2022) Optimal design and low noise realization of digital differentiator. J Electr Eng 73(5):332–336 Goswami OP, Shukla A, Kumar M (2022) Optimal design and low noise realization of digital differentiator. J Electr Eng 73(5):332–336
16.
Zurück zum Zitat Mekhnache C, Balaska N, Detouche N (2020) Novel fractional order integrators using traditional rules interpolation. Alg J Sig Syst 5(1):58–65 Mekhnache C, Balaska N, Detouche N (2020) Novel fractional order integrators using traditional rules interpolation. Alg J Sig Syst 5(1):58–65
17.
Zurück zum Zitat Swarnakar J (2022) Implementation of discrete-time fractional-order derivative controller for a class of double integrating system. Int J Autom Control 16(2):183–204CrossRef Swarnakar J (2022) Implementation of discrete-time fractional-order derivative controller for a class of double integrating system. Int J Autom Control 16(2):183–204CrossRef
18.
Zurück zum Zitat Rajasekhar K (2022) Low frequency applicable fractional order differintegrators design based on novel interpolated transform. In: Proceedings of international conference on electrical power engineering, communication and computing technology (ODICON). IEEE, Odisha, India, pp 1–5 Rajasekhar K (2022) Low frequency applicable fractional order differintegrators design based on novel interpolated transform. In: Proceedings of international conference on electrical power engineering, communication and computing technology (ODICON). IEEE, Odisha, India, pp 1–5
19.
Zurück zum Zitat Keyser RD, Muresan CI (2016) Analysis of a new continuous-to-discrete-time operator for the approximation of fractional order systems. In: Proceedings of international conference on systems, man, and cybernetics (SMC). IEEE, Budapest, Hungary, pp 003211–003216 Keyser RD, Muresan CI (2016) Analysis of a new continuous-to-discrete-time operator for the approximation of fractional order systems. In: Proceedings of international conference on systems, man, and cybernetics (SMC). IEEE, Budapest, Hungary, pp 003211–003216
20.
Zurück zum Zitat Tepljakov A (2016) Fractional-order calculus based modeling and control of dynamic systems. Tallinn University of Technology Tepljakov A (2016) Fractional-order calculus based modeling and control of dynamic systems. Tallinn University of Technology
21.
Zurück zum Zitat Yuce A, Tan N (2021) On the approximate inverse Laplace transform of the transfer function with a single fractional order. Trans Inst Meas Control 43(6):1376–1384CrossRef Yuce A, Tan N (2021) On the approximate inverse Laplace transform of the transfer function with a single fractional order. Trans Inst Meas Control 43(6):1376–1384CrossRef
Metadaten
Titel
Direct Approach for Modelling a Class of Fractional-Order System Using Two Generating Functions
verfasst von
Wandarisa Sungoh
Jaydeep Swarnakar
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_7