Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2017

25.11.2016 | RESEARCH PAPER

Direct computation of solution spaces

verfasst von: Johannes Fender, Fabian Duddeck, Markus Zimmermann

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In engineering, it is often desirable to find a subset of the set of feasible designs, a solution space, rather than a single solution. A feasible design is defined as a design which does not violate any constraints and has a performance value below a desired threshold. Performance measure, threshold value and constraints depend on the specific problem. For evaluation of a design with respect to feasibility, a model is required which maps the design parameters from the input space onto the performance measures in the output space. In state-of-the-art methodology, iterative sampling is used to generate an estimate of the frontier between feasible and infeasible regions in the input space. By evaluating each sample point with respect to feasibility, areas which contain a large fraction of feasible designs are identified and subsequently resampled. The largest hypercube containing only feasible designs is sought, because this results in independent intervals for each design parameter. Estimating this hypercube with sufficient precision may require a large number of model evaluations, depending on the dimensionality of the input space. In this paper, a novel approach is proposed for modeling the inequality constraints and an objective function in a way for which a linear formulation can be used, independently of the dimensionality of the problem. Thereby the exact solution for the largest feasible hypercube can be calculated at much lower cost than with stochastic sampling as described above, as the problem is reduced to solving a linear system of equations. The method is applied to structural design with respect to the US-NCAP frontal impact. The obtained solution is compared to numerical solutions of an identical system, which are computed using reduced order models and stochastic methods. By this example, the high potential of the new direct method for solution space computation is shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Carvalho M, Ambrosio J, Eberhard P (2011) Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure. Struct Multidiscip Optim 44(1):85–97. doi:10.1007/s00158-010-0590-y CrossRef Carvalho M, Ambrosio J, Eberhard P (2011) Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure. Struct Multidiscip Optim 44(1):85–97. doi:10.​1007/​s00158-010-0590-y CrossRef
Zurück zum Zitat Doyle J, Csete ME (2011) Architecture, constraints and behavior. Proc Natl Acad Sci USA 108 Doyle J, Csete ME (2011) Architecture, constraints and behavior. Proc Natl Acad Sci USA 108
Zurück zum Zitat Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidiscip Optim 35(4):375–389 Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidiscip Optim 35(4):375–389
Zurück zum Zitat Duddeck F, Wehrle EJ (2015) Recent advances on surrogate modeling for robustness assessment of structures with respect to crashworthiness requirements. In: 10th Europ. LS-DYNA Conf., Würzburg, Germany Duddeck F, Wehrle EJ (2015) Recent advances on surrogate modeling for robustness assessment of structures with respect to crashworthiness requirements. In: 10th Europ. LS-DYNA Conf., Würzburg, Germany
Zurück zum Zitat Fender J. (2013) Solution Spaces for Vehicle Crash Design. PhD thesis, Department of Civil, Geo, and Environmental Engineering, Technische Universität München Fender J. (2013) Solution Spaces for Vehicle Crash Design. PhD thesis, Department of Civil, Geo, and Environmental Engineering, Technische Universität München
Zurück zum Zitat Fender J, Duddeck F, Zimmermann M (2014) On the calibration of simplified vehicle crash models. Struct Multidiscip Optim 49(3):455–469CrossRef Fender J, Duddeck F, Zimmermann M (2014) On the calibration of simplified vehicle crash models. Struct Multidiscip Optim 49(3):455–469CrossRef
Zurück zum Zitat Fender J, Graff L, Harbrecht H, Zimmermann M (2014) Identifying key parameters for design improvement in high-dimensional systems with uncertainty. J Mech Des Fender J, Graff L, Harbrecht H, Zimmermann M (2014) Identifying key parameters for design improvement in high-dimensional systems with uncertainty. J Mech Des
Zurück zum Zitat Huang M (2002) Vehicle Crash Mechanics. CRC Press LLC Huang M (2002) Vehicle Crash Mechanics. CRC Press LLC
Zurück zum Zitat Kim CH, Mijar AR, Arora JS (2001) Development of simplified models for design and optimization of automotive structures for crashworthiness. Struct Multidiscip Optim 4(22):307–321. doi:10.1007/PL00013285 CrossRef Kim CH, Mijar AR, Arora JS (2001) Development of simplified models for design and optimization of automotive structures for crashworthiness. Struct Multidiscip Optim 4(22):307–321. doi:10.​1007/​PL00013285 CrossRef
Zurück zum Zitat Ladeveze P (2002) On a theory of the lack of knowledge in structural computation. Technical Note SY/XS 136 127, EADS Launch Vehicles, in French Ladeveze P (2002) On a theory of the lack of knowledge in structural computation. Technical Note SY/XS 136 127, EADS Launch Vehicles, in French
Zurück zum Zitat Ladeveze P, Puel G, Romeuf T (2006) On a strategy for the reduction of the lack of knowledge (lok) in model validation. Reliab Eng Syst Saf Ladeveze P, Puel G, Romeuf T (2006) On a strategy for the reduction of the lack of knowledge (lok) in model validation. Reliab Eng Syst Saf
Zurück zum Zitat Nocedal J, Wright SJ (1999) Numerical Optimization. Springer-Verlag Nocedal J, Wright SJ (1999) Numerical Optimization. Springer-Verlag
Zurück zum Zitat Zimmermann M, Hoessle JEV (2013) Computing solution spaces for robust design. Int J Numer Methods Eng 94(3):290–307CrossRef Zimmermann M, Hoessle JEV (2013) Computing solution spaces for robust design. Int J Numer Methods Eng 94(3):290–307CrossRef
Metadaten
Titel
Direct computation of solution spaces
verfasst von
Johannes Fender
Fabian Duddeck
Markus Zimmermann
Publikationsdatum
25.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1615-y

Weitere Artikel der Ausgabe 5/2017

Structural and Multidisciplinary Optimization 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.