Skip to main content
Erschienen in: Cellulose 1/2018

20.11.2017 | Original Paper

Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method

verfasst von: Yifeng Wang, Zheng Zhang, Ming Wang, Chuanhang Guo, Hui Liu, Hui Zeng, Xingxing Duan, Yufeng Zhou, Zehua Tang

Erschienen in: Cellulose | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carboxymethyl cellulose (CMC) has been broadly used in various fields ranging from pharmacy to lithium batteries because of its excellent properties such as the environmental friendliness, the good solubility, its low cost and biocompatibility. Herein, we present a direct electrodeposition method for carboxymethyl cellulose based on the coordination deposition. Using this method we can conveniently build smooth and homogeneous CMC films on the surface of copper and silver electrodes (or substrates). On the other hand, the deposited CMC film has sufficient strength to be completely detached from the electrodes (or substrates), which enables a novel and controllable method to prepare CMC films that can be used as independent film materials. In particular, the deposited CMC film shows favorable antibacterial activities, which are promising for applications in bioactive antibacterial coatings on metal substrates. More interestingly, the CMC electrodeposition provides the possibility to directly build sensors and detectors for electrochemical detection. Therefore, the CMC electrodeposition developed in this study can be potentially applied in surface coatings, functional films, and sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bourlinos AB, Petridis D (2002) Shape fabrication of millimeter-sized metal-containing carboxymethyl cellulose hollow capsules. Chem Commun (23):2788–2789 Bourlinos AB, Petridis D (2002) Shape fabrication of millimeter-sized metal-containing carboxymethyl cellulose hollow capsules. Chem Commun (23):2788–2789
Zurück zum Zitat Bressner JE, Marelli B, Qin GK, Klinker LE, Zhang YJ, Kaplan DL, Omenetto FG (2014) Rapid fabrication of silk films with controlled architectures via electrogelation. J Mater Chem B 2:4983–4987CrossRef Bressner JE, Marelli B, Qin GK, Klinker LE, Zhang YJ, Kaplan DL, Omenetto FG (2014) Rapid fabrication of silk films with controlled architectures via electrogelation. J Mater Chem B 2:4983–4987CrossRef
Zurück zum Zitat Cai T, Yang Z, Li HJ, Yang H, Li AM, Cheng RS (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614CrossRef Cai T, Yang Z, Li HJ, Yang H, Li AM, Cheng RS (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614CrossRef
Zurück zum Zitat Cai YW, Yuan F, Wang XM, Sun Z, Chen Y, Liu ZY, Wang XK, Yang ST, Wang S (2017) Synthesis of core-shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III). Cellulose 24:175–190CrossRef Cai YW, Yuan F, Wang XM, Sun Z, Chen Y, Liu ZY, Wang XK, Yang ST, Wang S (2017) Synthesis of core-shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III). Cellulose 24:175–190CrossRef
Zurück zum Zitat Cao XQ, Wang KY, Du G, Asiri AM, Ma YJ, Lu Q, Sun XP (2016) One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. J Mater Chem B 4:7540–7544CrossRef Cao XQ, Wang KY, Du G, Asiri AM, Ma YJ, Lu Q, Sun XP (2016) One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. J Mater Chem B 4:7540–7544CrossRef
Zurück zum Zitat Cheng HJ, Qian Q, Wang X, Yu P, Mao LQ (2012) Electricity generation from carboxymethyl cellulose biomass: a new application of enzymatic biofuel cells. Electrochim Acta 82:203–207CrossRef Cheng HJ, Qian Q, Wang X, Yu P, Mao LQ (2012) Electricity generation from carboxymethyl cellulose biomass: a new application of enzymatic biofuel cells. Electrochim Acta 82:203–207CrossRef
Zurück zum Zitat Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloid Surface A 328:73–78CrossRef Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloid Surface A 328:73–78CrossRef
Zurück zum Zitat Fernandes R, Wu LQ, Chen TH, Yi HM, Rubloff GW, Ghodssi R, Bentley WE, Payne GF (2003) Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19:4058–4062CrossRef Fernandes R, Wu LQ, Chen TH, Yi HM, Rubloff GW, Ghodssi R, Bentley WE, Payne GF (2003) Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19:4058–4062CrossRef
Zurück zum Zitat Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pane S (2013) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2:1037–1044CrossRef Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pane S (2013) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2:1037–1044CrossRef
Zurück zum Zitat Geng ZH, Wang X, Guo XC, Zhang Z, Chen YJ, Wang YF (2016) Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J Mater Chem B 4:3331–3338CrossRef Geng ZH, Wang X, Guo XC, Zhang Z, Chen YJ, Wang YF (2016) Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J Mater Chem B 4:3331–3338CrossRef
Zurück zum Zitat Gu TT, Hasebe Y (2006) DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosens Bioelectron 21:2121–2128CrossRef Gu TT, Hasebe Y (2006) DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosens Bioelectron 21:2121–2128CrossRef
Zurück zum Zitat Hokkanen S, Repo E, Suopajarvi T, Liimatainen H, Niinimaa J, Sillanpaa M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487CrossRef Hokkanen S, Repo E, Suopajarvi T, Liimatainen H, Niinimaa J, Sillanpaa M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487CrossRef
Zurück zum Zitat Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. Acs Appl Mater Inter 9:15307–15316CrossRef Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. Acs Appl Mater Inter 9:15307–15316CrossRef
Zurück zum Zitat Jeong D, Kim HK, Jeong JP, Dindulkar SD, Cho E, Yang YH, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellulose 23:2609–2625CrossRef Jeong D, Kim HK, Jeong JP, Dindulkar SD, Cho E, Yang YH, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellulose 23:2609–2625CrossRef
Zurück zum Zitat Kim E, Xiong Y, Cheng Y, Wu HC, Liu Y, Morrow BH, Ghodssi R, Rubloff GW, Shen JN (2015) Chitosan to connect biology to electronics: fabricating the bio-device interface and communicating across this interface. Polymers 7:1–46CrossRef Kim E, Xiong Y, Cheng Y, Wu HC, Liu Y, Morrow BH, Ghodssi R, Rubloff GW, Shen JN (2015) Chitosan to connect biology to electronics: fabricating the bio-device interface and communicating across this interface. Polymers 7:1–46CrossRef
Zurück zum Zitat Klinkajon W, Supaphol P (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 9:045008CrossRef Klinkajon W, Supaphol P (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 9:045008CrossRef
Zurück zum Zitat Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J, Kim SW (2013) Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzyme electrode. Biosens Bioelectron 42:342–348CrossRef Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J, Kim SW (2013) Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzyme electrode. Biosens Bioelectron 42:342–348CrossRef
Zurück zum Zitat Li S, Ge ZH, Zhang BP, Yao Y, Wang HC, Yang J, Li Y, Gao C, Lin YH (2016) Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Appl Surf Sci 384:272–278CrossRef Li S, Ge ZH, Zhang BP, Yao Y, Wang HC, Yang J, Li Y, Gao C, Lin YH (2016) Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Appl Surf Sci 384:272–278CrossRef
Zurück zum Zitat Li C, Zhang TT, Zhao JY, Liu H, Zheng B, Gu Y, Yan XY, Li YR, Lu NN, Zhang ZQ (2017) Boosted sensor performance by surface modification of bifunctional rht-type metal–organic framework with nanosized electrochemically reduced graphene oxide. ACS Appl Mater Inter 9:2984–2994CrossRef Li C, Zhang TT, Zhao JY, Liu H, Zheng B, Gu Y, Yan XY, Li YR, Lu NN, Zhang ZQ (2017) Boosted sensor performance by surface modification of bifunctional rht-type metal–organic framework with nanosized electrochemically reduced graphene oxide. ACS Appl Mater Inter 9:2984–2994CrossRef
Zurück zum Zitat Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF (2010) Biofabrication to build the biology-device interface. Biofabrication 2:022002CrossRef Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF (2010) Biofabrication to build the biology-device interface. Biofabrication 2:022002CrossRef
Zurück zum Zitat Liu JY, Wang XH, Wang TS, Li D, Xi FN, Wang J, Wang EK (2014) Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor. ACS Appl Mater Inter 6:19997–20002CrossRef Liu JY, Wang XH, Wang TS, Li D, Xi FN, Wang J, Wang EK (2014) Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor. ACS Appl Mater Inter 6:19997–20002CrossRef
Zurück zum Zitat Liu Y, Tsao CY, Kim E, Tschirhart T, Terrell JL, Bentley WE, Payne GF (2017) Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication. Adv Healthc Mater 6:1600908CrossRef Liu Y, Tsao CY, Kim E, Tschirhart T, Terrell JL, Bentley WE, Payne GF (2017) Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication. Adv Healthc Mater 6:1600908CrossRef
Zurück zum Zitat Ludwig J, An L, Pattengale B, Kong QY, Zhang XY, Xi PX, Huang JE (2015) Ultrafast hole trapping and relaxation dynamics in p-type CuS nanodisks. J Phys Chem Lett 6:2671–2675CrossRef Ludwig J, An L, Pattengale B, Kong QY, Zhang XY, Xi PX, Huang JE (2015) Ultrafast hole trapping and relaxation dynamics in p-type CuS nanodisks. J Phys Chem Lett 6:2671–2675CrossRef
Zurück zum Zitat Ma R, Epand RF, Zhitomirsky I (2010) Electrodeposition of hyaluronic acid and hyaluronic acid–bovine serum albumin films from aqueous solutions. Colloid Surface B 77:279–285CrossRef Ma R, Epand RF, Zhitomirsky I (2010) Electrodeposition of hyaluronic acid and hyaluronic acid–bovine serum albumin films from aqueous solutions. Colloid Surface B 77:279–285CrossRef
Zurück zum Zitat Ma HH, Sun JZ, Zhang Y, Bian C, Xia SH, Zhen T (2016) Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B-1 in maize. Biosens Bioelectron 80:222–229CrossRef Ma HH, Sun JZ, Zhang Y, Bian C, Xia SH, Zhen T (2016) Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B-1 in maize. Biosens Bioelectron 80:222–229CrossRef
Zurück zum Zitat Marquez A, Jimenez-Jorquera C, Dominguez C, Munoz-Berbel X (2017) Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosens Bioelectron 97:136–142CrossRef Marquez A, Jimenez-Jorquera C, Dominguez C, Munoz-Berbel X (2017) Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosens Bioelectron 97:136–142CrossRef
Zurück zum Zitat Meng W, Xu S, Dai L, Li YH, Zhu J, Wang L (2017) An enhanced sensitivity towards H2O2 reduction based on a novel Cu metal–organic framework and acetylene black modified electrode. Electrochim Acta 230:324–332CrossRef Meng W, Xu S, Dai L, Li YH, Zhu J, Wang L (2017) An enhanced sensitivity towards H2O2 reduction based on a novel Cu metal–organic framework and acetylene black modified electrode. Electrochim Acta 230:324–332CrossRef
Zurück zum Zitat Meulendijks N, Burghoorn M, van Ee R, Mourad M, Mann D, Keul H, Bex G, van Veldhoven E, Verheijen M, Buskens PBA (2017) Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24:2191–2204CrossRef Meulendijks N, Burghoorn M, van Ee R, Mourad M, Mann D, Keul H, Bex G, van Veldhoven E, Verheijen M, Buskens PBA (2017) Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24:2191–2204CrossRef
Zurück zum Zitat Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8:2762–2767CrossRef Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8:2762–2767CrossRef
Zurück zum Zitat Peng XH, Liu Y, Bentley WE, Payne GF (2016) Electrochemical fabrication of functional gelatin-based bioelectronic interface. Biomacromol 17:558–563CrossRef Peng XH, Liu Y, Bentley WE, Payne GF (2016) Electrochemical fabrication of functional gelatin-based bioelectronic interface. Biomacromol 17:558–563CrossRef
Zurück zum Zitat Pishbin F, Mourino V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479CrossRef Pishbin F, Mourino V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479CrossRef
Zurück zum Zitat Qiu L, Shao ZQ, Wang DX, Wang FJ, Wang WJ, Wang JQ (2014) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose 21:2789–2796CrossRef Qiu L, Shao ZQ, Wang DX, Wang FJ, Wang WJ, Wang JQ (2014) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose 21:2789–2796CrossRef
Zurück zum Zitat Roy A, Ernsting MJ, Undzys E, Li SD (2015) A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials 52:335–346CrossRef Roy A, Ernsting MJ, Undzys E, Li SD (2015) A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials 52:335–346CrossRef
Zurück zum Zitat Ruan CQ, Stromme M, Lindh J (2016) A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 23:2627–2638CrossRef Ruan CQ, Stromme M, Lindh J (2016) A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 23:2627–2638CrossRef
Zurück zum Zitat Seuss S, Boccaccini AR (2013) Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromol 14:3355–3369CrossRef Seuss S, Boccaccini AR (2013) Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromol 14:3355–3369CrossRef
Zurück zum Zitat Shahbazi M, Ahmadi SJ, Seif A, Rajabzadeh G (2016) Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocolloid 61:378–389CrossRef Shahbazi M, Ahmadi SJ, Seif A, Rajabzadeh G (2016) Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocolloid 61:378–389CrossRef
Zurück zum Zitat Shi XW, Tsao CY, Yang XH, Liu Y, Dykstra P, Rubloff GW, Ghodssi R, Bentley WE, Payne GF (2009) Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv Funct Mater 19:2074–2080CrossRef Shi XW, Tsao CY, Yang XH, Liu Y, Dykstra P, Rubloff GW, Ghodssi R, Bentley WE, Payne GF (2009) Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv Funct Mater 19:2074–2080CrossRef
Zurück zum Zitat Shi XW, Qiu L, Nie Z, Xiao L, Payne GF, Du YM (2013) Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Biofabrication 5:041001CrossRef Shi XW, Qiu L, Nie Z, Xiao L, Payne GF, Du YM (2013) Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Biofabrication 5:041001CrossRef
Zurück zum Zitat Wang YF, Liu Y, Cheng Y, Kim E, Rubloff GW, Bentley WE, Payne GF (2011) Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels. Adv Mater 23:5817–5821CrossRef Wang YF, Liu Y, Cheng Y, Kim E, Rubloff GW, Bentley WE, Payne GF (2011) Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels. Adv Mater 23:5817–5821CrossRef
Zurück zum Zitat Wang BB, Ji XP, Zhao HY, Wang N, Li XR, Ni RX, Liu YH (2014a) An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Biosens Bioelectron 55:113–119CrossRef Wang BB, Ji XP, Zhao HY, Wang N, Li XR, Ni RX, Liu YH (2014a) An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Biosens Bioelectron 55:113–119CrossRef
Zurück zum Zitat Wang YF, Geng ZH, Guo MM, Chen YJ, Guo XC, Wang X (2014b) Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS Appl Mater Inter 6:15510–15515CrossRef Wang YF, Geng ZH, Guo MM, Chen YJ, Guo XC, Wang X (2014b) Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS Appl Mater Inter 6:15510–15515CrossRef
Zurück zum Zitat Wang C, Qian XR, An XH (2015a) In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22:3789–3797CrossRef Wang C, Qian XR, An XH (2015a) In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22:3789–3797CrossRef
Zurück zum Zitat Wang YF, Guo XC, Pan RH, Han D, Chen T, Geng ZH, Xiong YF, Chen YJ (2015b) Electrodeposition of chitosan/gelatin/nanosilver: a new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Mater Sci Eng, C 53:222–228CrossRef Wang YF, Guo XC, Pan RH, Han D, Chen T, Geng ZH, Xiong YF, Chen YJ (2015b) Electrodeposition of chitosan/gelatin/nanosilver: a new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Mater Sci Eng, C 53:222–228CrossRef
Zurück zum Zitat Wang ZH, Liu HP, Wang SY, Rao ZL, Yang YY (2015c) A luminescent Terbium-Succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment. Sens Actuators B Chem 220:779–787CrossRef Wang ZH, Liu HP, Wang SY, Rao ZL, Yang YY (2015c) A luminescent Terbium-Succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment. Sens Actuators B Chem 220:779–787CrossRef
Zurück zum Zitat Weng LH, Rostamzadeh P, Nooryshokry N, Le HC, Golzarian J (2013) In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 9:6823–6833CrossRef Weng LH, Rostamzadeh P, Nooryshokry N, Le HC, Golzarian J (2013) In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 9:6823–6833CrossRef
Zurück zum Zitat Zeng XD, Liu XY, Kong B, Wang Y, Wei WZ (2008) A sensitive nonenzymatic hydrogen peroxide sensor based on DNA-Cu2+ complex electrodeposition onto glassy carbon electrode. Sensor Actuators B Chem 133:381–386CrossRef Zeng XD, Liu XY, Kong B, Wang Y, Wei WZ (2008) A sensitive nonenzymatic hydrogen peroxide sensor based on DNA-Cu2+ complex electrodeposition onto glassy carbon electrode. Sensor Actuators B Chem 133:381–386CrossRef
Zurück zum Zitat Zhang MR, Chen XQ, Pan GB (2017) Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection. Sens Actuators B Chem 240:142–147CrossRef Zhang MR, Chen XQ, Pan GB (2017) Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection. Sens Actuators B Chem 240:142–147CrossRef
Zurück zum Zitat Zhao PK, Liu HY, Deng HB, Xiao L, Qin CQ, Du YM, Shi XW (2014) A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloid Surf B 123:657–663CrossRef Zhao PK, Liu HY, Deng HB, Xiao L, Qin CQ, Du YM, Shi XW (2014) A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloid Surf B 123:657–663CrossRef
Metadaten
Titel
Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method
verfasst von
Yifeng Wang
Zheng Zhang
Ming Wang
Chuanhang Guo
Hui Liu
Hui Zeng
Xingxing Duan
Yufeng Zhou
Zehua Tang
Publikationsdatum
20.11.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1580-7

Weitere Artikel der Ausgabe 1/2018

Cellulose 1/2018 Zur Ausgabe