Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2015

01.06.2015 | research paper

Direct modeling for computational fluid dynamics

verfasst von: Kun Xu

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.

Graphical Abstract

The most successful governing equations for gas dynamics are the Navier-Stokes (NS) equations in the hydrodynamic scale and the Boltzmann equation in the kinetic scale. Between these two limiting scales, there is no well-accepted equations for non-equilibrium flow description. As shown in Fig.2, the kinetic equation identifies particle transport and collision, and the hydrodynamic ones capture wave propagation. The direct modeling for computational fluid dynamics is to construct a continuous spectrum of governing equation in all scales from kinetic to hydrodynamic scales.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boyd, I., Deschenes, T.: Hybrid particle-continuum numerical methods for aerospace applications. RTO-EN-AVT-194 (2011) Boyd, I., Deschenes, T.: Hybrid particle-continuum numerical methods for aerospace applications. RTO-EN-AVT-194 (2011)
3.
Zurück zum Zitat Bond, D., Goldsworthy, M.J., Wheatley, V.: Numerical investigation of the heat and mass transfer analogy in rarefied gas flows. Int. J. Heat Mass Transf. 85, 971–986 (2015)CrossRef Bond, D., Goldsworthy, M.J., Wheatley, V.: Numerical investigation of the heat and mass transfer analogy in rarefied gas flows. Int. J. Heat Mass Transf. 85, 971–986 (2015)CrossRef
4.
Zurück zum Zitat Chen, S., Xu, K., Lee, C. et al.: A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 231, 6643–6664 (2012) Chen, S., Xu, K., Lee, C. et al.: A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 231, 6643–6664 (2012)
5.
Zurück zum Zitat Huang, J., Xu, K., Yu, P.: A unified gas-kinetic scheme for continuum and rarefied flows II: Multi-dimensional cases. Commun. Comput. Phys. 12, 662–690 (2012)MathSciNet Huang, J., Xu, K., Yu, P.: A unified gas-kinetic scheme for continuum and rarefied flows II: Multi-dimensional cases. Commun. Comput. Phys. 12, 662–690 (2012)MathSciNet
6.
Zurück zum Zitat Huang, J., Xu, K., Yu, P.: A unified gas-kinetic scheme for continuum and rarefied flows III: Microflow simulations. Commun. Comput. Phys. 14, 1147–1173 (2013)MathSciNet Huang, J., Xu, K., Yu, P.: A unified gas-kinetic scheme for continuum and rarefied flows III: Microflow simulations. Commun. Comput. Phys. 14, 1147–1173 (2013)MathSciNet
7.
Zurück zum Zitat Liu, S., Yu, P., Xu, K., et al.: Unified gas kinetic scheme for diatomic molecular simulations in all flow regimes. J. Comput. Phys. 259, 96–113 (2014) Liu, S., Yu, P., Xu, K., et al.: Unified gas kinetic scheme for diatomic molecular simulations in all flow regimes. J. Comput. Phys. 259, 96–113 (2014)
8.
Zurück zum Zitat Venugopal, V., Girimaji, S.S.: Unified gas kinetic scheme and direct simulation Monte Carlo computations of high-speed lid-driven microcavity flows. Commun. Comput. Phys. to appear (2015) Venugopal, V., Girimaji, S.S.: Unified gas kinetic scheme and direct simulation Monte Carlo computations of high-speed lid-driven microcavity flows. Commun. Comput. Phys. to appear (2015)
9.
Zurück zum Zitat Xu, K., Huang, J.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229, 7747–7764 (2010) Xu, K., Huang, J.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229, 7747–7764 (2010)
10.
Zurück zum Zitat Xu, K., Huang, J.: An improved unified gas-kinetic scheme and the study of shock structures. IMA J. Appl. Math. 76, 698–711 (2011)MATHMathSciNetCrossRef Xu, K., Huang, J.: An improved unified gas-kinetic scheme and the study of shock structures. IMA J. Appl. Math. 76, 698–711 (2011)MATHMathSciNetCrossRef
11.
Zurück zum Zitat Xu, K.: Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-kinetic Schemes. World Scientific, Singapore (2015) Xu, K.: Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-kinetic Schemes. World Scientific, Singapore (2015)
12.
Zurück zum Zitat Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970) Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970)
13.
Zurück zum Zitat Tcheremissine, F.: Direct numerical solution of the Boltzmann equation. Technical Report, DTIC Document (2005) Tcheremissine, F.: Direct numerical solution of the Boltzmann equation. Technical Report, DTIC Document (2005)
14.
Zurück zum Zitat Holway, L. H.: Kinetic theory of shock structure using an ellipsoidal distribution function. In: Sone, Y.O.S.H.I.O Rarefied Gas Dynamics. Academic Press, New York (1966) Holway, L. H.: Kinetic theory of shock structure using an ellipsoidal distribution function. In: Sone, Y.O.S.H.I.O Rarefied Gas Dynamics. Academic Press, New York (1966)
15.
Zurück zum Zitat Shakhov, E.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. Res. 3, 95–96 (1968)CrossRef Shakhov, E.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. Res. 3, 95–96 (1968)CrossRef
16.
Zurück zum Zitat Chen, S., Xu, K., Cai, Q.: A comparison and unification of ellipsoidal statistical and Shakhov BGK models. Adv. Appl. Math. Mech. 7, 245–266 (2015)CrossRef Chen, S., Xu, K., Cai, Q.: A comparison and unification of ellipsoidal statistical and Shakhov BGK models. Adv. Appl. Math. Mech. 7, 245–266 (2015)CrossRef
17.
Zurück zum Zitat Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75, 1833–1852 (2006)MATHMathSciNetCrossRef Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75, 1833–1852 (2006)MATHMathSciNetCrossRef
18.
Zurück zum Zitat Wu, L., White, C., Scanlon, T.J., et al.: Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 27–52 (2013) Wu, L., White, C., Scanlon, T.J., et al.: Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 27–52 (2013)
19.
Zurück zum Zitat Sun, Q., Cai, C., Gao, W.: On the validity of the Boltzmann-BGK model through relaxation evaluation. Acta Mech. Sin. 30, 133–143 (2014)MathSciNetCrossRef Sun, Q., Cai, C., Gao, W.: On the validity of the Boltzmann-BGK model through relaxation evaluation. Acta Mech. Sin. 30, 133–143 (2014)MathSciNetCrossRef
20.
Zurück zum Zitat Dimarco, G., Pareschi, L.: Exponential Runge-Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 49, 2057–2077 (2011) Dimarco, G., Pareschi, L.: Exponential Runge-Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 49, 2057–2077 (2011)
21.
Zurück zum Zitat Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010) Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)
22.
Zurück zum Zitat Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)MATHMathSciNetCrossRef Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)MATHMathSciNetCrossRef
23.
Zurück zum Zitat Chen, S., Xu, K.: A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme in continuum flow limit. J. Comput. Phys. 288, 52–65 (2015)MathSciNetCrossRef Chen, S., Xu, K.: A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme in continuum flow limit. J. Comput. Phys. 288, 52–65 (2015)MathSciNetCrossRef
24.
25.
Zurück zum Zitat Xu, K.: A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335 (2001)MATHMathSciNetCrossRef Xu, K.: A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335 (2001)MATHMathSciNetCrossRef
26.
Zurück zum Zitat Mieussens, L.: On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models. J. Comput. Phys. 253, 138–156 (2013)MathSciNetCrossRef Mieussens, L.: On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models. J. Comput. Phys. 253, 138–156 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Sun, W., Jiang, S., Xu, K.: Asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. J. Comput. Phys. 285, 265–279 (2015)MathSciNetCrossRef Sun, W., Jiang, S., Xu, K.: Asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. J. Comput. Phys. 285, 265–279 (2015)MathSciNetCrossRef
29.
Zurück zum Zitat Liu, C., Xu, K., Sun, Q., et al.: A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations. Preprint (2015) Liu, C., Xu, K., Sun, Q., et al.: A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations. Preprint (2015)
30.
Zurück zum Zitat Valentini, P., Schwartzentruber, T.E.: Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21, 066101 (2009)CrossRef Valentini, P., Schwartzentruber, T.E.: Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21, 066101 (2009)CrossRef
31.
Zurück zum Zitat John, B., Gu, X.-J., Emerson, D.R.: Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: A parallel dsmc study. Comput. Fluids 45, 197–201 (2011) John, B., Gu, X.-J., Emerson, D.R.: Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: A parallel dsmc study. Comput. Fluids 45, 197–201 (2011)
32.
Zurück zum Zitat Ghia, U., Ghia, K.N., Shin, C.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982) Ghia, U., Ghia, K.N., Shin, C.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)
Metadaten
Titel
Direct modeling for computational fluid dynamics
verfasst von
Kun Xu
Publikationsdatum
01.06.2015
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2015
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0453-2

Weitere Artikel der Ausgabe 3/2015

Acta Mechanica Sinica 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.