Skip to main content

2010 | OriginalPaper | Buchkapitel

7. Direct Neural Control of Anatomically Correct Robotic Hands

verfasst von : Alik S. Widge, Chet T. Moritz, Yoky Matsuoka

Erschienen in: Brain-Computer Interfaces

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a potential method of achieving dexterous control of a prosthetic hand using a brain-computer interface (BCI). Major control successes with invasive BCIs have been achieved by recording the activity of small populations of neurons in motor areas of the cortex. Even the activity of single neurons can be used to directly control computer cursors or muscle stimulators. The combination of this direct neural control with anthropomorphic hand prostheses has great promise for the restoration of dexterity. Based on users’ requirements for a functional hand prosthesis, a fully anthropomorphic robot hand is required. Recent work in our laboratories has developed two new technologies, the Neurochip and the Anatomically Correct Testbed (ACT) Hand. These technologies are described and some examples of their performance are given. We conclude by describing the advantages of merging these approaches, with the goal of achieving dexterous control of a prosthetic hand.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Afshar P, Matsuoka Y (2004) Neural-based control of a robotic hand: Evidence for distinct muscle strategies. IEEE Int Conf Robot Autom 2:4633–4638 Afshar P, Matsuoka Y (2004) Neural-based control of a robotic hand: Evidence for distinct muscle strategies. IEEE Int Conf Robot Autom 2:4633–4638
Zurück zum Zitat Azemi E, Stauffer WR, Gostock MS, et al. (2008) Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization. Acta Biomater 4:1208–1217 CrossRef Azemi E, Stauffer WR, Gostock MS, et al. (2008) Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization. Acta Biomater 4:1208–1217 CrossRef
Zurück zum Zitat Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115–126 CrossRef Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115–126 CrossRef
Zurück zum Zitat Bluethmann W, Ambrose R, Diftler M, et al. (2003) Robonaut: A robot designed to work with humans in space. Auton Robot 14:179–197 MATHCrossRef Bluethmann W, Ambrose R, Diftler M, et al. (2003) Robonaut: A robot designed to work with humans in space. Auton Robot 14:179–197 MATHCrossRef
Zurück zum Zitat Carmena JM, Lebedev MA, Crist RE, et al. (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1:193–208 CrossRef Carmena JM, Lebedev MA, Crist RE, et al. (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1:193–208 CrossRef
Zurück zum Zitat Chapin JK, Moxon KA, Markowitz RS, et al. (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670 CrossRef Chapin JK, Moxon KA, Markowitz RS, et al. (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670 CrossRef
Zurück zum Zitat Cui XT, Zhou DD (2007) Poly(3) (4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng 15:502–508 CrossRef Cui XT, Zhou DD (2007) Poly(3) (4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng 15:502–508 CrossRef
Zurück zum Zitat Deshpande A, Balasubramanian R, Lin R, et al (2008) Understanding variable moment arms for the index finger MCP joints through the ACT hand. IEEE Int Conf Robot Autom 776–782 Deshpande A, Balasubramanian R, Lin R, et al (2008) Understanding variable moment arms for the index finger MCP joints through the ACT hand. IEEE Int Conf Robot Autom 776–782
Zurück zum Zitat Deshpande A, Ko J, Matsuoka Y (2009) Anatomically correct testbed hand control: Muscle and joint control strategies. IEEE Int Conf Robot Autom 2287–2293 Deshpande A, Ko J, Matsuoka Y (2009) Anatomically correct testbed hand control: Muscle and joint control strategies. IEEE Int Conf Robot Autom 2287–2293
Zurück zum Zitat Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27 Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27
Zurück zum Zitat Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958 CrossRef Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958 CrossRef
Zurück zum Zitat Fetz EE (2007) Volitional control of neural activity: Implications for brain-computer interfaces. J Physiol 579:571–579 CrossRef Fetz EE (2007) Volitional control of neural activity: Implications for brain-computer interfaces. J Physiol 579:571–579 CrossRef
Zurück zum Zitat Fetz EE, Baker MA (1973) Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J Neurophysiol 36:179–204 Fetz EE, Baker MA (1973) Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J Neurophysiol 36:179–204
Zurück zum Zitat Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153 CrossRef Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153 CrossRef
Zurück zum Zitat Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419 CrossRef Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419 CrossRef
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, et al. (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–170 CrossRef Hochberg LR, Serruya MD, Friehs GM, et al. (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–170 CrossRef
Zurück zum Zitat Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97:360–374 CrossRef Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97:360–374 CrossRef
Zurück zum Zitat Jacobsen S, Iversen E, Knutti D, et al. (1986) Design of the Utah/MIT dextrous hand. IEEE Int Conf Robot Autom 3:96–102 Jacobsen S, Iversen E, Knutti D, et al. (1986) Design of the Utah/MIT dextrous hand. IEEE Int Conf Robot Autom 3:96–102
Zurück zum Zitat Jarosiewicz B, Chase SM, Fraser GW, et al. (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105:19486–19491 CrossRef Jarosiewicz B, Chase SM, Fraser GW, et al. (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105:19486–19491 CrossRef
Zurück zum Zitat Kilgore KL, Hoyen HA, Bryden AM, et al. (2008) An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am 33:539–550 CrossRef Kilgore KL, Hoyen HA, Bryden AM, et al. (2008) An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am 33:539–550 CrossRef
Zurück zum Zitat Kim HK, Biggs SJ, Schloerb DW, et al. (2006) Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 53:1164–1173 CrossRef Kim HK, Biggs SJ, Schloerb DW, et al. (2006) Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 53:1164–1173 CrossRef
Zurück zum Zitat Kim S, Simeral J, Hochberg L, et al. (2008) Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng 5:455–476 CrossRef Kim S, Simeral J, Hochberg L, et al. (2008) Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng 5:455–476 CrossRef
Zurück zum Zitat Koterba S, Matsuoka Y (2006) Flexible, high density, artificial skin with triaxial force discernment. IEEE Int Conf Robot Autom Koterba S, Matsuoka Y (2006) Flexible, high density, artificial skin with triaxial force discernment. IEEE Int Conf Robot Autom
Zurück zum Zitat Kuiken TA, Miller LA, Lipschutz RD, et al. (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet 369:371–380 CrossRef Kuiken TA, Miller LA, Lipschutz RD, et al. (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet 369:371–380 CrossRef
Zurück zum Zitat Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126:1–18 CrossRef Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126:1–18 CrossRef
Zurück zum Zitat Matsuoka Y (1997) The mechanisms in a humanoid robot hand. Auton Robot 4:199–209 CrossRef Matsuoka Y (1997) The mechanisms in a humanoid robot hand. Auton Robot 4:199–209 CrossRef
Zurück zum Zitat Matsuoka Y, Afshar P, Oh M (2006) On the design of robotic hands for brain-machine interface. Neurosurg Focus 20:1–9 CrossRef Matsuoka Y, Afshar P, Oh M (2006) On the design of robotic hands for brain-machine interface. Neurosurg Focus 20:1–9 CrossRef
Zurück zum Zitat Mavoori J, Jackson A, Diorio C, et al. (2005) An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods 148:71–77 CrossRef Mavoori J, Jackson A, Diorio C, et al. (2005) An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods 148:71–77 CrossRef
Zurück zum Zitat Maynard EM, Nordhausen CT, Normann RA (1997) The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol 102:228–239 CrossRef Maynard EM, Nordhausen CT, Normann RA (1997) The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol 102:228–239 CrossRef
Zurück zum Zitat McConnell GC, Rees HD, Levey AI, et al. (2009) Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng 6:056003 CrossRef McConnell GC, Rees HD, Levey AI, et al. (2009) Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng 6:056003 CrossRef
Zurück zum Zitat Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–643 CrossRef Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–643 CrossRef
Zurück zum Zitat Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10:530–540 CrossRef Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10:530–540 CrossRef
Zurück zum Zitat Papageorgiou DP, Shore SE, Sanford C, Bledsoe J, et al. (2006) A shuttered neural probe with on-chip flowmeters for chronic in vivo drug delivery. J Microelectromech Syst 15:1025–1033 CrossRef Papageorgiou DP, Shore SE, Sanford C, Bledsoe J, et al. (2006) A shuttered neural probe with on-chip flowmeters for chronic in vivo drug delivery. J Microelectromech Syst 15:1025–1033 CrossRef
Zurück zum Zitat Pohlmeyer EA, Oby ER, Perreault EJ, et al. (2009) Toward the restoration of hand use to a paralyzed monkey: Brain-controlled functional electrical stimulation of forearm muscles. PLoS One 4:e5924 CrossRef Pohlmeyer EA, Oby ER, Perreault EJ, et al. (2009) Toward the restoration of hand use to a paralyzed monkey: Brain-controlled functional electrical stimulation of forearm muscles. PLoS One 4:e5924 CrossRef
Zurück zum Zitat Radhakrishnan SM, Baker SN, Jackson A (2008) Learning a novel myoelectric-controlled interface task. J Neurophysiol 100:2397–2408 CrossRef Radhakrishnan SM, Baker SN, Jackson A (2008) Learning a novel myoelectric-controlled interface task. J Neurophysiol 100:2397–2408 CrossRef
Zurück zum Zitat Salisbury J, Craig J (1982) Articulated hands: Force control and kinematic issues. Int J Robot Res 1:4 CrossRef Salisbury J, Craig J (1982) Articulated hands: Force control and kinematic issues. Int J Robot Res 1:4 CrossRef
Zurück zum Zitat Santhanam G, Ryu SI, Yu BM, et al. (2006) A high-performance brain-computer interface. Nature 442:195–198 CrossRef Santhanam G, Ryu SI, Yu BM, et al. (2006) A high-performance brain-computer interface. Nature 442:195–198 CrossRef
Zurück zum Zitat Serruya MD, Hatsopoulos NG, Paninski L, et al. (2002) Brain-machine interface: Instant neural control of a movement signal. Nature 416:141–142 CrossRef Serruya MD, Hatsopoulos NG, Paninski L, et al. (2002) Brain-machine interface: Instant neural control of a movement signal. Nature 416:141–142 CrossRef
Zurück zum Zitat Silcox D, Rooks M, Vogel R, et al. (1993) Myoelectric prostheses. A long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg Am 75:1781–1789 Silcox D, Rooks M, Vogel R, et al. (1993) Myoelectric prostheses. A long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg Am 75:1781–1789
Zurück zum Zitat Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832 Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832
Zurück zum Zitat Truccolo W, Friehs GM, Donoghue JP, et al. (2008) Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 28:1163–1178 CrossRef Truccolo W, Friehs GM, Donoghue JP, et al. (2008) Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 28:1163–1178 CrossRef
Zurück zum Zitat Vande Weghe M, Rogers M, Weissert M, et al (2004) The ACT hand: Design of the skeletal structure. IEEE Int Conf Robot Autom Vande Weghe M, Rogers M, Weissert M, et al (2004) The ACT hand: Design of the skeletal structure. IEEE Int Conf Robot Autom
Zurück zum Zitat Velliste M, Perel S, Spalding MC, et al. (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101 CrossRef Velliste M, Perel S, Spalding MC, et al. (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101 CrossRef
Zurück zum Zitat Vetter RJ, Williams JC, Hetke JF, et al. (2004) Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 51:896–904 CrossRef Vetter RJ, Williams JC, Hetke JF, et al. (2004) Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 51:896–904 CrossRef
Zurück zum Zitat Widge AS, Matsuoka Y, Kurnikova M (2007a) In silico insertion of poly(alkylthiophene) conductive polymers into phospholipid bilayers. Langmuir 23:10672–10681 CrossRef Widge AS, Matsuoka Y, Kurnikova M (2007a) In silico insertion of poly(alkylthiophene) conductive polymers into phospholipid bilayers. Langmuir 23:10672–10681 CrossRef
Zurück zum Zitat Widge AS, Jeffries-El M, Cui X, et al. (2007b) Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectron 22:1723–1732 CrossRef Widge AS, Jeffries-El M, Cui X, et al. (2007b) Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectron 22:1723–1732 CrossRef
Zurück zum Zitat Wilkinson D, Weghe M, Matsuoka Y (2003) An extensor mechanism for an anatomical robotic hand. IEEE Int Conf Robot Autom Wilkinson D, Weghe M, Matsuoka Y (2003) An extensor mechanism for an anatomical robotic hand. IEEE Int Conf Robot Autom
Zurück zum Zitat Zanos S, Richardson AG, Shupe L, et al (2009) The Neurochip-2: A programmable, implantable system for recording neural signals and delivering contingent electrical stimuli in freely behaving monkeys. 2009 Neuroscience Meeting Planner, Program No 664.615 Zanos S, Richardson AG, Shupe L, et al (2009) The Neurochip-2: A programmable, implantable system for recording neural signals and delivering contingent electrical stimuli in freely behaving monkeys. 2009 Neuroscience Meeting Planner, Program No 664.615
Metadaten
Titel
Direct Neural Control of Anatomically Correct Robotic Hands
verfasst von
Alik S. Widge
Chet T. Moritz
Yoky Matsuoka
Copyright-Jahr
2010
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-84996-272-8_7

Neuer Inhalt