Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2019

24.01.2019 | Research Paper

Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall

verfasst von: Qian-Jin Xia, Wei-Xi Huang, Chun-Xiao Xu

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct numerical simulation of a spatially developing turbulent boundary layer over a compliant wall with anisotropic wall material properties is performed. The Reynolds number varies from 300 to approximately 860 along the streamwise direction, based on the external flow velocity and the momentum thickness. Eight typical cases are selected for numerical investigation under the guidance of monoharmonic analysis. The instantaneous flow fields exhibit a traveling wavy motion of the compliant wall, and the frequency-wavenumber power spectrum of wall pressure fluctuation is computed to quantify the mutual influence of the wall compliance and the turbulent flow at different wave numbers. It is shown that the Reynolds shear stress and the pressure fluctuation are generally enhanced by the wall compliance with the parameters considered in the present study. A dynamical decomposition of the skin-friction coefficient is derived, and a new term (CW) appears due to the wall-induced Reynolds shear stress. The influence of the anisotropic compliant wall motion on the turbulent boundary layer through the wall-induced negative Reynolds shear stress is discussed. To elucidate the underlying mechanism, the budget analysis of the Reynolds stress transportation is further carried out. The impact of the wall compliance on the turbulent flow is disclosed by examining the variations of the diffusion and velocity–pressure correlation terms. It is shown that an increase of the Reynolds stress inside the flow domain is caused by enhancement of the velocity–pressure correlation term, possibly through the long-range influence of the wall compliance on the pressure field, rather than diffusion of the wall-induced Reynolds shear stress into the fluid flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bushnell, D.M., Hefner, J.N., Ash, R.L.: Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids Part II 20, S31–S48 (1977)CrossRef Bushnell, D.M., Hefner, J.N., Ash, R.L.: Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids Part II 20, S31–S48 (1977)CrossRef
2.
Zurück zum Zitat Riley, J.J., Gad-el-Hak, M., Metcalfe, R.W.: Compliant coatings. Annu. Rev. Fluid Mech. 20, 393–420 (1988)CrossRef Riley, J.J., Gad-el-Hak, M., Metcalfe, R.W.: Compliant coatings. Annu. Rev. Fluid Mech. 20, 393–420 (1988)CrossRef
3.
Zurück zum Zitat Gad-el-Hak, M.: Compliant coatings: a decade of progress. Appl. Mech. Rev. 49, S147–S157 (1996)CrossRef Gad-el-Hak, M.: Compliant coatings: a decade of progress. Appl. Mech. Rev. 49, S147–S157 (1996)CrossRef
4.
Zurück zum Zitat Gad-el-Hak, M.: Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38, 77–99 (2002)CrossRef Gad-el-Hak, M.: Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38, 77–99 (2002)CrossRef
5.
Zurück zum Zitat Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)CrossRefMATH Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)CrossRefMATH
6.
Zurück zum Zitat Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232 (1986)CrossRefMATH Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232 (1986)CrossRefMATH
7.
Zurück zum Zitat Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171–223 (1990)CrossRefMATH Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171–223 (1990)CrossRefMATH
8.
Zurück zum Zitat Yeo, K.S.: Hydrodynamic stability of boundary-layer flow over a class of anisotropic complaint walls. J. Fluid Mech. 220, 125–160 (1990)CrossRefMATH Yeo, K.S.: Hydrodynamic stability of boundary-layer flow over a class of anisotropic complaint walls. J. Fluid Mech. 220, 125–160 (1990)CrossRefMATH
9.
Zurück zum Zitat Yeo, K.S.: The three-dimensional stability of boundary-layer flow over compliant walls. J. Fluid Mech. 238, 537–577 (1992)CrossRefMATH Yeo, K.S.: The three-dimensional stability of boundary-layer flow over compliant walls. J. Fluid Mech. 238, 537–577 (1992)CrossRefMATH
10.
Zurück zum Zitat Lucey, A.D., Carpenter, P.W.: Boundary layer instability over compliant walls: comparison between theory and experiment. Phys. Fluids 7, 2355–2363 (1995)MathSciNetCrossRef Lucey, A.D., Carpenter, P.W.: Boundary layer instability over compliant walls: comparison between theory and experiment. Phys. Fluids 7, 2355–2363 (1995)MathSciNetCrossRef
11.
Zurück zum Zitat Luhar, M., Sharma, A.S., McKeon, B.J.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRef Luhar, M., Sharma, A.S., McKeon, B.J.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRef
12.
Zurück zum Zitat Kramer, M.O.: Boundary-layer stabilization by distributed damping. J. Aeronaut. Sci. 24, 459–460 (1957) Kramer, M.O.: Boundary-layer stabilization by distributed damping. J. Aeronaut. Sci. 24, 459–460 (1957)
13.
Zurück zum Zitat Gad-el-Hak, M., Blackwelder, R.F., Riley, J.J.: On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140, 257–280 (1984)CrossRef Gad-el-Hak, M., Blackwelder, R.F., Riley, J.J.: On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140, 257–280 (1984)CrossRef
14.
Zurück zum Zitat Lee, T., Fisher, M., Schwarz, W.H.: Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373–401 (1993)CrossRef Lee, T., Fisher, M., Schwarz, W.H.: Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373–401 (1993)CrossRef
15.
Zurück zum Zitat Choi, K.S., Yang, X., Clayton, B.R., et al.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 453, 2229–2240 (1997)CrossRefMATH Choi, K.S., Yang, X., Clayton, B.R., et al.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 453, 2229–2240 (1997)CrossRefMATH
16.
Zurück zum Zitat Verma, M., Kumaran, V.: A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall. J. Fluid Mech. 727, 407–455 (2013)MathSciNetCrossRefMATH Verma, M., Kumaran, V.: A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall. J. Fluid Mech. 727, 407–455 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Endo, T., Himeno, R.: Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, 1–10 (2002)CrossRef Endo, T., Himeno, R.: Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, 1–10 (2002)CrossRef
18.
Zurück zum Zitat Xu, S., Rempfer, D., Lumley, J.: Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 11–34 (2003)MathSciNetCrossRefMATH Xu, S., Rempfer, D., Lumley, J.: Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 11–34 (2003)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Luo, H., Bewley, T.R.: Design, modeling, and optimization of compliant tensegrity fabrics for the reduction of turbulent skin friction. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 460-470 (2003) Luo, H., Bewley, T.R.: Design, modeling, and optimization of compliant tensegrity fabrics for the reduction of turbulent skin friction. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 460-470 (2003)
20.
Zurück zum Zitat Luo, H., Bewley, T.R.: Accurate simulation of near-wall turbulence over a compliant tensegrity fabric. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 184-197 (2005) Luo, H., Bewley, T.R.: Accurate simulation of near-wall turbulence over a compliant tensegrity fabric. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 184-197 (2005)
21.
Zurück zum Zitat Fukagata, K., Kern, S., Chatelain, P., et al.: Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, N35 (2008)CrossRef Fukagata, K., Kern, S., Chatelain, P., et al.: Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, N35 (2008)CrossRef
22.
Zurück zum Zitat Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRef Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRef
23.
Zurück zum Zitat Xia, Q.J., Huang, W.X., Xu, C.X.: Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126–142 (2017)CrossRef Xia, Q.J., Huang, W.X., Xu, C.X.: Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126–142 (2017)CrossRef
24.
Zurück zum Zitat Rosti, M., Brandt, L.: Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708–735 (2017)MathSciNetCrossRef Rosti, M., Brandt, L.: Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708–735 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Kramer, M.O.: Hydrodynamics of the dolphin. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 2, pp. 111–130. Academic Press, New York (1965) Kramer, M.O.: Hydrodynamics of the dolphin. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 2, pp. 111–130. Academic Press, New York (1965)
26.
Zurück zum Zitat Grosskreutz, R.: Wechselwirkungen zwischen turbulenten Grenzschichten und weichen Wänden. Selbstverlag Max-Planck-Institut für Strömungsforschung und der Aerodynamische Versuchsanstalt (1971) (in German) Grosskreutz, R.: Wechselwirkungen zwischen turbulenten Grenzschichten und weichen Wänden. Selbstverlag Max-Planck-Institut für Strömungsforschung und der Aerodynamische Versuchsanstalt (1971) (in German)
27.
Zurück zum Zitat Grosskreutz, R.: An attempt to control boundary-layer turbulence with nonisotropic compliant walls. Univ. Sci. J. Dar es Salaam 1, 65–73 (1975) Grosskreutz, R.: An attempt to control boundary-layer turbulence with nonisotropic compliant walls. Univ. Sci. J. Dar es Salaam 1, 65–73 (1975)
28.
Zurück zum Zitat Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)MathSciNetCrossRefMATH Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Kim, K., Baek, S.J., Sung, H.J.: An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 38, 125–138 (2002)CrossRefMATH Kim, K., Baek, S.J., Sung, H.J.: An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 38, 125–138 (2002)CrossRefMATH
30.
Zurück zum Zitat Huang, W.X., Sung, H.J.: Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301–336 (2010)MathSciNetCrossRefMATH Huang, W.X., Sung, H.J.: Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301–336 (2010)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5–26 (2009)MathSciNetCrossRefMATH Del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5–26 (2009)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH
33.
Zurück zum Zitat Xia, Q.J., Huang, W.X., Xu, C.X., et al.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47, 025503 (2015)CrossRef Xia, Q.J., Huang, W.X., Xu, C.X., et al.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47, 025503 (2015)CrossRef
34.
Zurück zum Zitat Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATH Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATH
Metadaten
Titel
Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall
verfasst von
Qian-Jin Xia
Wei-Xi Huang
Chun-Xiao Xu
Publikationsdatum
24.01.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0820-x

Weitere Artikel der Ausgabe 2/2019

Acta Mechanica Sinica 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.