Skip to main content
Erschienen in: Neural Processing Letters 3/2017

27.02.2016

Directed Connectivity Analysis of Functional Brain Networks during Cognitive Activity Using Transfer Entropy

verfasst von: Md. Hedayetul Islam Shovon, Nanda Nandagopal, Ramasamy Vijayalakshmi, Jia Tina Du, Bernadine Cocks

Erschienen in: Neural Processing Letters | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most previous studies of functional brain networks have been conducted on undirected networks despite the fact that direction of information flow is able to provide additional information on how one brain region influences another. The current study explores the application of normalized transfer entropy (NTE) to detect and identify the patterns of information flow in the functional brain networks derived from EEG data during cognitive activity. Using a combination of signal processing, information and graph-theoretic techniques, this study has identified and characterized the changing connectivity patterns of the directed functional brain networks during different cognitive tasks. The functional brain networks constructed from EEG data using non-linear measure NTE also exhibit small-world property. An exponential truncated power-law fits the in-degree and out-degree distribution of directed functional brain networks. The empirical results demonstrate not only the application of transfer entropy in evaluating the directed functional brain networks, but also in determining the information flow patterns and thus provide more insights into the dynamics of the neuronal clusters underpinning cognitive function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRef
2.
Zurück zum Zitat Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRef Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRef
3.
Zurück zum Zitat Nandagopal DN, Vijayalakshmi R, Cocks B, Dahal N, Dasari N, Thilaga M, Dharwez SS (2013) Computational techniques for characterizing cognition using EEG data-new approaches. Proc Comput Sci 22:699–708CrossRef Nandagopal DN, Vijayalakshmi R, Cocks B, Dahal N, Dasari N, Thilaga M, Dharwez SS (2013) Computational techniques for characterizing cognition using EEG data-new approaches. Proc Comput Sci 22:699–708CrossRef
4.
Zurück zum Zitat Shovon MHI, Nandagopal DN, Vijayalakshmi R, Du JT, Cocks B (2014) Transfer Entropy and Information Flow Patterns in Functional Brain Networks during Cognitive Activity. In: Neural information processing. Lecture notes in computer science (LNCS 8834), Part I., Springer, New York, pp 1–10 Shovon MHI, Nandagopal DN, Vijayalakshmi R, Du JT, Cocks B (2014) Transfer Entropy and Information Flow Patterns in Functional Brain Networks during Cognitive Activity. In: Neural information processing. Lecture notes in computer science (LNCS 8834), Part I., Springer, New York, pp 1–10
5.
Zurück zum Zitat Leicht EA, Newman ME (2008) Community structure in directed networks. Phys Rev Lett 100(11):118703CrossRef Leicht EA, Newman ME (2008) Community structure in directed networks. Phys Rev Lett 100(11):118703CrossRef
7.
Zurück zum Zitat Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30(1):45–67MathSciNetCrossRef Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30(1):45–67MathSciNetCrossRef
8.
Zurück zum Zitat Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461CrossRef Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461CrossRef
9.
Zurück zum Zitat Wibral M, Vicente R, Lindner M (2014) Transfer entropy in neuroscience. In: Wibral M, Vicente R, Lizier JT (eds) Directed information measures in neuroscience. Springer, Berlin, pp 3–36CrossRef Wibral M, Vicente R, Lindner M (2014) Transfer entropy in neuroscience. In: Wibral M, Vicente R, Lizier JT (eds) Directed information measures in neuroscience. Springer, Berlin, pp 3–36CrossRef
10.
Zurück zum Zitat Chávez M, Martinerie J, Le Van QM (2003) Statistical assessment of nonlinear causality: application to epileptic EEG signals. J Neurosci Methods 124(2):113–128CrossRef Chávez M, Martinerie J, Le Van QM (2003) Statistical assessment of nonlinear causality: application to epileptic EEG signals. J Neurosci Methods 124(2):113–128CrossRef
11.
Zurück zum Zitat Gourévitch B, Eggermont JJ (2007) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97(3):2533–2543CrossRef Gourévitch B, Eggermont JJ (2007) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97(3):2533–2543CrossRef
12.
Zurück zum Zitat Sabesan S, Narayanan K, Prasad A, Iasemidis L, Spanias A, Tsakalis K (2007) Information flow in coupled nonlinear systems: Application to the epileptic human brain. In: Pardalos PM, Boginski VL, Alkis V (eds) Data mining in biomedicine. Springer, Berlin, pp 483–503CrossRef Sabesan S, Narayanan K, Prasad A, Iasemidis L, Spanias A, Tsakalis K (2007) Information flow in coupled nonlinear systems: Application to the epileptic human brain. In: Pardalos PM, Boginski VL, Alkis V (eds) Data mining in biomedicine. Springer, Berlin, pp 483–503CrossRef
14.
Zurück zum Zitat Lindner M, Vicente R, Priesemann V, Wibral M (2011) TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci 12(1):119CrossRef Lindner M, Vicente R, Priesemann V, Wibral M (2011) TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci 12(1):119CrossRef
15.
Zurück zum Zitat Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci 30(1):69–84MathSciNetCrossRef Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci 30(1):69–84MathSciNetCrossRef
16.
Zurück zum Zitat Kim MK, Kim M, Oh E, Kim SP (2013) A review on the computational methods for emotional state estimation from the human EEG. Comput Math Methods Med 2013:573734 Kim MK, Kim M, Oh E, Kim SP (2013) A review on the computational methods for emotional state estimation from the human EEG. Comput Math Methods Med 2013:573734
17.
Zurück zum Zitat Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308MathSciNetCrossRef Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308MathSciNetCrossRef
19.
Zurück zum Zitat Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef
20.
Zurück zum Zitat McDonnell MD, Yaveroğlu ÖN, Schmerl BA, Iannella N, Ward LM (2014) Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks. PloS One 9(12):e114503CrossRef McDonnell MD, Yaveroğlu ÖN, Schmerl BA, Iannella N, Ward LM (2014) Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks. PloS One 9(12):e114503CrossRef
21.
Zurück zum Zitat Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11):e369CrossRef Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11):e369CrossRef
22.
Zurück zum Zitat Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72CrossRef Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72CrossRef
23.
Zurück zum Zitat Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, Chen H (2011) Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI. Neuroimage 54(4):2683–2694CrossRef Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, Chen H (2011) Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI. Neuroimage 54(4):2683–2694CrossRef
24.
Zurück zum Zitat Yan C, He Y (2011) Driving and driven architectures of directed small-world human brain functional networks. PLoS One 6(8):e23460CrossRef Yan C, He Y (2011) Driving and driven architectures of directed small-world human brain functional networks. PLoS One 6(8):e23460CrossRef
25.
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442CrossRef
26.
Zurück zum Zitat Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32(2):249–263CrossRef Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32(2):249–263CrossRef
27.
Zurück zum Zitat Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PloS One 3(4):e0002051CrossRef Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PloS One 3(4):e0002051CrossRef
28.
Zurück zum Zitat CURRY 7 EEG Acquisition and Analysis Software. Compumedics Neuroscan USA Ltd CURRY 7 EEG Acquisition and Analysis Software. Compumedics Neuroscan USA Ltd
29.
Zurück zum Zitat Nuamps EEG Amplifier (Model 7181). Compumedics Neuroscan USA Ltd Nuamps EEG Amplifier (Model 7181). Compumedics Neuroscan USA Ltd
30.
Zurück zum Zitat STIM 2 Stimulus Delivery and Experiment Control Solution. Compumedics Neuroscan USA Ltd STIM 2 Stimulus Delivery and Experiment Control Solution. Compumedics Neuroscan USA Ltd
31.
Zurück zum Zitat Hosseini SH, Hoeft F, Kesler SR (2012) GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PloS One 7(7):e40709CrossRef Hosseini SH, Hoeft F, Kesler SR (2012) GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PloS One 7(7):e40709CrossRef
32.
Zurück zum Zitat Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRef Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRef
33.
Zurück zum Zitat Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’network? Neurosci Lett 355(1):25–28CrossRef Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’network? Neurosci Lett 355(1):25–28CrossRef
34.
Zurück zum Zitat Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523CrossRef Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523CrossRef
35.
Zurück zum Zitat Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402(3):273–277CrossRef Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402(3):273–277CrossRef
Metadaten
Titel
Directed Connectivity Analysis of Functional Brain Networks during Cognitive Activity Using Transfer Entropy
verfasst von
Md. Hedayetul Islam Shovon
Nanda Nandagopal
Ramasamy Vijayalakshmi
Jia Tina Du
Bernadine Cocks
Publikationsdatum
27.02.2016
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2017
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-016-9506-1

Weitere Artikel der Ausgabe 3/2017

Neural Processing Letters 3/2017 Zur Ausgabe

Neuer Inhalt