Skip to main content
Erschienen in: Rare Metals 5/2021

06.03.2020

Directional solidification behavior of turbine blades in DZ125 alloy: design of blade numbers on assembly

verfasst von: Yong Shang, Yan-Ling Pei, Sheng-Kai Gong, Yi Ru, Yuan-Chao Yu, Ru-Hao Zhou, Shu-Suo Li, Hui-Bin Xu

Erschienen in: Rare Metals | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of blades assembly, i.e., the blade number on the solidification process, heat exchange and grain structure on a directionally solidified Ni-based superalloy DZ125 was investigated by combining the experimental and simulation results. The casting process was simulated thermodynamically by ProCAST software, where the interface heat transfer coefficient was precisely determined by a measurement with thermocouples. There is a good agreement between experimental and simulation results. It was interestingly found that with the number of blades increasing from 6 to 10, due to the decrease in radiation absorption efficiency, the maximum temperature and the heating rate decrease in the mold, during the preheat process. During the withdrawal procedure, increased assembly numbers reduce the radiation exchange from mold to the enclosure, resulting in the decrease in cooling rate and temperature gradient of the blades. At the end of withdrawal, the slower cooling rate of the outside balances the temperature distribution of internal and external surfaces on the rabbet of blade.

Graphic abstract

The interface heat transfer coefficient (IHTC) values of DZ125 casting system were investigated by inverse method. Then, a series of assembly blade groups were designed and being cast and calculated. Values of IHTC are proved to be suitable for different assembly groups of casting in this case. Based on simulation and experimental results, it was interestingly found that: In the preheating process, with the number of blades increased, the maximum temperature on the mold becomes lower and the heating rate becomes slower, which result from the decrease in radiation efficiency between the mold and graphite heater. During the withdrawal, increasing assembly blade number reduced the radiation exchange from the mold to the enclosure, and it results in the cooling rate and temperature gradient on the blades getting decreased. At the end of withdrawal, the slower cooling rate leads to the temperature distribution maintaining uniformity for internal and external surfaces on the rabbet of the blade.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Hang WG, Liu L, Zhao XB, Huang TW, Yu ZH, Qu M, Fu HZ. Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Met. 2009;28(6):633.CrossRef Hang WG, Liu L, Zhao XB, Huang TW, Yu ZH, Qu M, Fu HZ. Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Met. 2009;28(6):633.CrossRef
[2]
Zurück zum Zitat Qu YP, Zhou JH, Yu XF, Wu YC, Peng ZJ, Zhang MJ, Huang AH. Effect of recrystallization thickness on creep properties of directionally solidified DZ125 alloy. Rare Met Mater Eng. 2018;47(1):235. Qu YP, Zhou JH, Yu XF, Wu YC, Peng ZJ, Zhang MJ, Huang AH. Effect of recrystallization thickness on creep properties of directionally solidified DZ125 alloy. Rare Met Mater Eng. 2018;47(1):235.
[3]
Zurück zum Zitat Sun HF, Tian SG, Tian N, Yu HN, Meng XL. Microstructure heterogeneity and creep damage of DZ125 nickel-based superalloy. Prog Nat Sci Mater Int. 2014;24(3):266.CrossRef Sun HF, Tian SG, Tian N, Yu HN, Meng XL. Microstructure heterogeneity and creep damage of DZ125 nickel-based superalloy. Prog Nat Sci Mater Int. 2014;24(3):266.CrossRef
[4]
Zurück zum Zitat Hu YB, Zhang L, Cheng CQ, Guang P, Guo JZ. Oxidation behavior of the nickel-based superalloy DZ125 at 980 °C. Acta Metall Sin (Engl Lett). 2017;30(9):857.CrossRef Hu YB, Zhang L, Cheng CQ, Guang P, Guo JZ. Oxidation behavior of the nickel-based superalloy DZ125 at 980 °C. Acta Metall Sin (Engl Lett). 2017;30(9):857.CrossRef
[5]
Zurück zum Zitat Zhao SN, Li XF, Zhou XM, Cheng KY, Huai XL. Investigation of the effects of Ni-based alloy DZ125 on the normal spectral emissivity during oxidation. Appl Therm Eng. 2016;109(25):663.CrossRef Zhao SN, Li XF, Zhou XM, Cheng KY, Huai XL. Investigation of the effects of Ni-based alloy DZ125 on the normal spectral emissivity during oxidation. Appl Therm Eng. 2016;109(25):663.CrossRef
[6]
Zurück zum Zitat Chen YD, Zheng WW, Zheng YR, Feng Q. Microstructural evolution and corresponding stress rupture property in DZ125 alloy after thermal exposure. Rare Met. 2018;42(10):1009. Chen YD, Zheng WW, Zheng YR, Feng Q. Microstructural evolution and corresponding stress rupture property in DZ125 alloy after thermal exposure. Rare Met. 2018;42(10):1009.
[7]
Zurück zum Zitat Tian SG, Meng XL, Tian N, Yu HC. Microstructure and creep property of DZ125 nickel-based superalloy. Mater Sci Forum. 2013;747–748:697.CrossRef Tian SG, Meng XL, Tian N, Yu HC. Microstructure and creep property of DZ125 nickel-based superalloy. Mater Sci Forum. 2013;747–748:697.CrossRef
[8]
Zurück zum Zitat Wang N, Liu L, Gao S, Zhao XB, Huang TW, Zhang J, Fu HZ. Simulation of grain selection during single crystal casting of a Ni-base superalloy. J Alloy Compd. 2014;586(6):220.CrossRef Wang N, Liu L, Gao S, Zhao XB, Huang TW, Zhang J, Fu HZ. Simulation of grain selection during single crystal casting of a Ni-base superalloy. J Alloy Compd. 2014;586(6):220.CrossRef
[9]
Zurück zum Zitat Szeliga D, Kubiak K, Motyka M, Sieniawski J. Directional solidification of Ni-based superalloy castings: thermal analysis. Vacuum. 2016;131:32.CrossRef Szeliga D, Kubiak K, Motyka M, Sieniawski J. Directional solidification of Ni-based superalloy castings: thermal analysis. Vacuum. 2016;131:32.CrossRef
[10]
Zurück zum Zitat Reddy GS, Saurabh K, Krishnan RY. Numerical simulation of CM247SX single crystal high pressure turbine vane. Mater Today Proc. 2017;4(8):7837.CrossRef Reddy GS, Saurabh K, Krishnan RY. Numerical simulation of CM247SX single crystal high pressure turbine vane. Mater Today Proc. 2017;4(8):7837.CrossRef
[11]
Zurück zum Zitat Reddy GS, Saurabh K, Krishna DM. Numerical simulation of directionally solidified CM247LC high pressure turbine blade. Mater Today Proc. 2017;4(8):7820.CrossRef Reddy GS, Saurabh K, Krishna DM. Numerical simulation of directionally solidified CM247LC high pressure turbine blade. Mater Today Proc. 2017;4(8):7820.CrossRef
[12]
Zurück zum Zitat Xue X, Wu YF, Chen XF, Han FK, Kong SG, Li W, Li JT. Casting defects control of thin-walled superalloy adjustment sheet. Foundry. 2015;28(6):744. Xue X, Wu YF, Chen XF, Han FK, Kong SG, Li W, Li JT. Casting defects control of thin-walled superalloy adjustment sheet. Foundry. 2015;28(6):744.
[13]
Zurück zum Zitat Pan D, Xu QY, Yu J, Liu BC, Li JR, Yuan HL, Jin HP. Numerical simulation of directional solidification of single crystal turbine blade casting. Int J Cast Met Res. 2008;21(1–4):308.CrossRef Pan D, Xu QY, Yu J, Liu BC, Li JR, Yuan HL, Jin HP. Numerical simulation of directional solidification of single crystal turbine blade casting. Int J Cast Met Res. 2008;21(1–4):308.CrossRef
[14]
Zurück zum Zitat Szeliga D, Kubiak K, Ziaja W, Cygan R, Suchy JS, Burbelko A, Nowak WJ, Sieniawski J. Investigation of casting–ceramic shell mold interface thermal resistance during solidification process of nickel based superalloy. Exp Therm Fluid Sci. 2017;87:149.CrossRef Szeliga D, Kubiak K, Ziaja W, Cygan R, Suchy JS, Burbelko A, Nowak WJ, Sieniawski J. Investigation of casting–ceramic shell mold interface thermal resistance during solidification process of nickel based superalloy. Exp Therm Fluid Sci. 2017;87:149.CrossRef
[15]
Zurück zum Zitat Carter P, Cox DC, Gandin CA, Reed RC. Process modelling of grain selection during the solidification of single crystal superalloy castings. Mater Sci Eng A. 2000;280(2):233.CrossRef Carter P, Cox DC, Gandin CA, Reed RC. Process modelling of grain selection during the solidification of single crystal superalloy castings. Mater Sci Eng A. 2000;280(2):233.CrossRef
[16]
Zurück zum Zitat O’Mahoney D, Browne DJ. Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process. Exp Thermal Fluid Sci. 2000;22(3):111.CrossRef O’Mahoney D, Browne DJ. Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process. Exp Thermal Fluid Sci. 2000;22(3):111.CrossRef
[17]
Zurück zum Zitat Velasco E, Valtierra S, Mojica JF, Talamantes J, Cano S, Colas R. Casting-chill interface heat transfer during solidification of an aluminum alloy. Metall Mater Trans B. 1999;30(4):773.CrossRef Velasco E, Valtierra S, Mojica JF, Talamantes J, Cano S, Colas R. Casting-chill interface heat transfer during solidification of an aluminum alloy. Metall Mater Trans B. 1999;30(4):773.CrossRef
[18]
Zurück zum Zitat Dong Y, Bu K, Dou Y, Zhang DH. Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades. J Mater Process Technol. 2011;211(12):2123.CrossRef Dong Y, Bu K, Dou Y, Zhang DH. Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades. J Mater Process Technol. 2011;211(12):2123.CrossRef
[19]
Zurück zum Zitat Li JR, Liu SZ, Zhong ZG. Solidification simulation of single crystal investment castings. J Mater Sci Technol. 2002;18(4):315. Li JR, Liu SZ, Zhong ZG. Solidification simulation of single crystal investment castings. J Mater Sci Technol. 2002;18(4):315.
[20]
Zurück zum Zitat Yue QZ, Liu L, Yang WC, Huang TW, Zhang J, Fu HZ, Zhao XB. Influence of withdrawal rate on the porosity in a third-generation Ni-based single crystal superalloy. Prog Nat Sci Mater Int. 2017;27(2):236.CrossRef Yue QZ, Liu L, Yang WC, Huang TW, Zhang J, Fu HZ, Zhao XB. Influence of withdrawal rate on the porosity in a third-generation Ni-based single crystal superalloy. Prog Nat Sci Mater Int. 2017;27(2):236.CrossRef
[21]
Zurück zum Zitat Szeliga D, Kubiak K, Sieniawski J. Control of liquidus isotherm shape during solidification of Ni-based superalloy of single crystal platforms. J Mater Process Technol. 2016;234:18.CrossRef Szeliga D, Kubiak K, Sieniawski J. Control of liquidus isotherm shape during solidification of Ni-based superalloy of single crystal platforms. J Mater Process Technol. 2016;234:18.CrossRef
[22]
Zurück zum Zitat Mueller EM. The characterization of freckle casting defects in directionally solidified nickel-base superalloy turbine blades. J Org Chem. 2008;61(20):7022. Mueller EM. The characterization of freckle casting defects in directionally solidified nickel-base superalloy turbine blades. J Org Chem. 2008;61(20):7022.
[23]
Zurück zum Zitat El-Bagoury N, Nofal A. Microstructure of an experimental Ni base superalloy under various casting conditions. Mater Sci Eng A. 2010;527(29–30):7793.CrossRef El-Bagoury N, Nofal A. Microstructure of an experimental Ni base superalloy under various casting conditions. Mater Sci Eng A. 2010;527(29–30):7793.CrossRef
[24]
Zurück zum Zitat Zhang W, Liu L, Zhao XB, Huang TW, Yu ZH, Qu M, Fu HZ. Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Met. 2009;28(6):633.CrossRef Zhang W, Liu L, Zhao XB, Huang TW, Yu ZH, Qu M, Fu HZ. Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Met. 2009;28(6):633.CrossRef
[25]
Zurück zum Zitat Li S, Qi H, Yang X, Xiao G. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;37(3):204.CrossRef Li S, Qi H, Yang X, Xiao G. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;37(3):204.CrossRef
[26]
Zurück zum Zitat Ge BM, Liu L, Zhao XB, Huang TW, Zhang J, Fu HZ. Effect of directional solidification methods on the cast microstructure and grain orientation of blade shaped DZ125 superalloy. Rare Met Mater Eng. 2013;42(11):2222.CrossRef Ge BM, Liu L, Zhao XB, Huang TW, Zhang J, Fu HZ. Effect of directional solidification methods on the cast microstructure and grain orientation of blade shaped DZ125 superalloy. Rare Met Mater Eng. 2013;42(11):2222.CrossRef
[27]
Zurück zum Zitat Zhang H, Pei Y, Li S, Gong S. Effect of process parameters on microstructures and properties of DZ125 superalloy solidified by LMC. Mater Res Innov. 2014;18(4):385. Zhang H, Pei Y, Li S, Gong S. Effect of process parameters on microstructures and properties of DZ125 superalloy solidified by LMC. Mater Res Innov. 2014;18(4):385.
[28]
Zurück zum Zitat Guo YG, Li SM, Liu L, Fu HZ. CA simulation of microstructure of directionally solidified DZ125 superalloy. Acta Metall Sin. 2008;44(3):365. Guo YG, Li SM, Liu L, Fu HZ. CA simulation of microstructure of directionally solidified DZ125 superalloy. Acta Metall Sin. 2008;44(3):365.
[29]
Zurück zum Zitat Rappaz M, Gandin CA. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. 1993;41(2):345.CrossRef Rappaz M, Gandin CA. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. 1993;41(2):345.CrossRef
[30]
Zurück zum Zitat Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall. 1986;34(5):823.CrossRef Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Metall. 1986;34(5):823.CrossRef
[31]
Zurück zum Zitat Bobadilla M, Lacaze J, Lesoult G. Influence des conditions de solidification sur le déroulement de la solidification des aciers inoxydables austénitiques. J Cryst Growth. 1988;89(4):531.CrossRef Bobadilla M, Lacaze J, Lesoult G. Influence des conditions de solidification sur le déroulement de la solidification des aciers inoxydables austénitiques. J Cryst Growth. 1988;89(4):531.CrossRef
Metadaten
Titel
Directional solidification behavior of turbine blades in DZ125 alloy: design of blade numbers on assembly
verfasst von
Yong Shang
Yan-Ling Pei
Sheng-Kai Gong
Yi Ru
Yuan-Chao Yu
Ru-Hao Zhou
Shu-Suo Li
Hui-Bin Xu
Publikationsdatum
06.03.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01324-0

Weitere Artikel der Ausgabe 5/2021

Rare Metals 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.