Skip to main content

2025 | OriginalPaper | Buchkapitel

DISCIE–Discriminative Closed Information Extraction

verfasst von : Cedric Möller, Ricardo Usbeck

Erschienen in: The Semantic Web – ISWC 2024

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a novel method for closed information extraction. The method employs a discriminative approach that incorporates type and entity-specific information to improve relation extraction accuracy, particularly benefiting long-tail relations. Notably, this method demonstrates superior performance compared to state-of-the-art end-to-end generative models. This is especially evident for the problem of large-scale closed information extraction where we are confronted with millions of entities and hundreds of relations. Furthermore, we emphasize the efficiency aspect by leveraging smaller models. In particular, the integration of type-information proves instrumental in achieving performance levels on par with or surpassing those of a larger generative model. This advancement holds promise for more accurate and efficient information extraction techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Using QIDs and PIDs from www.​wikidata.​org. QIDs are the identifiers of entities and PIDs are the identifiers of relations.
 
2
Relations rarely occurring.
 
4
Usually, mention recognition is solved by applying BIO sequence tagging. We trained and evaluated such a method but achieved a lower performance in comparison to the token-pair-based approach described above.
 
5
This could be replaced with any other KG containing descriptions.
 
7
This was also observable in our use case.
 
8
930 types are used in total. They were filtered by exploring how useful they are for disambiguating between different entities.
 
9
When evaluating on GeoNRE or WikipediaNRE, we limited the set of available predictable relations and entities to the same set as used in the work by Josifoski et al. [12]. Therefore, we set prediction scores for out-of-scope relations to 0.0.
 
10
We did not compare to SCICERO [8] as we were not able to adapt their code to our datasets.
 
11
Hence putting more emphasis on recall.
 
12
They occur only rarely in the training data.
 
13
GenIE takes a long time to evaluate on the other datasets on a single GPU. Therefore we opted for only running the efficiency tests on the smallest dataset. While the average speed differs between the datasets, DISCIE was considerably faster for all of them.
 
Literatur
2.
Zurück zum Zitat Ayoola, T., Tyagi, S., Fisher, J., Christodoulopoulos, C., Pierleoni, A.: Refined: An efficient zero-shot-capable approach to end-to-end entity linking. In: Loukina, A., Gangadharaiah, R., Min, B. (eds.) Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, NAACL 2022, Hybrid: Seattle, Washington, USA + Online, C41555 July 2022, pp. 209–220. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.naacl-industry.24 Ayoola, T., Tyagi, S., Fisher, J., Christodoulopoulos, C., Pierleoni, A.: Refined: An efficient zero-shot-capable approach to end-to-end entity linking. In: Loukina, A., Gangadharaiah, R., Min, B. (eds.) Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, NAACL 2022, Hybrid: Seattle, Washington, USA + Online, C41555 July 2022, pp. 209–220. Association for Computational Linguistics (2022). https://​doi.​org/​10.​18653/​v1/​2022.​naacl-industry.​24
3.
Zurück zum Zitat Cabot, P.H., Navigli, R.: REBEL: relation extraction by end-to-end language generation. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November 2021, pp. 2370–2381. Association for Computational Linguistics (2021). https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.204 Cabot, P.H., Navigli, R.: REBEL: relation extraction by end-to-end language generation. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November 2021, pp. 2370–2381. Association for Computational Linguistics (2021). https://​doi.​org/​10.​18653/​V1/​2021.​FINDINGS-EMNLP.​204
6.
Zurück zum Zitat Chaganty, A.T., Paranjape, A., Liang, P., Manning, C.D.: Importance sampling for unbiased on-demand evaluation of knowledge base population. In: Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9-11 September 2017. pp. 1038–1048. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/d17-1109 Chaganty, A.T., Paranjape, A., Liang, P., Manning, C.D.: Importance sampling for unbiased on-demand evaluation of knowledge base population. In: Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9-11 September 2017. pp. 1038–1048. Association for Computational Linguistics (2017). https://​doi.​org/​10.​18653/​v1/​d17-1109
7.
Zurück zum Zitat Chicco, D.: Siamese neural networks: an overview. Artifi. Neural Netw., 73–94 (2021) Chicco, D.: Siamese neural networks: an overview. Artifi. Neural Netw., 73–94 (2021)
9.
Zurück zum Zitat Galárraga, L., Heitz, G., Murphy, K., Suchanek, F.M.: Canonicalizing open knowledge bases. In: Li, J., Wang, X.S., Garofalakis, M.N., Soboroff, I., Suel, T., Wang, M. (eds.) Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, 3-7 November 2014, pp. 1679–1688. ACM (2014). https://doi.org/10.1145/2661829.2662073 Galárraga, L., Heitz, G., Murphy, K., Suchanek, F.M.: Canonicalizing open knowledge bases. In: Li, J., Wang, X.S., Garofalakis, M.N., Soboroff, I., Suel, T., Wang, M. (eds.) Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, 3-7 November 2014, pp. 1679–1688. ACM (2014). https://​doi.​org/​10.​1145/​2661829.​2662073
10.
12.
Zurück zum Zitat Josifoski, M., Cao, N.D., Peyrard, M., Petroni, F., West, R.: Genie: Generative information extraction. In: Carpuat, M., de Marneffe, M., Ruíz, I.V.M. (eds.) Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, 10-15 July 2022, pp. 4626–4643. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.naacl-main.342 Josifoski, M., Cao, N.D., Peyrard, M., Petroni, F., West, R.: Genie: Generative information extraction. In: Carpuat, M., de Marneffe, M., Ruíz, I.V.M. (eds.) Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, 10-15 July 2022, pp. 4626–4643. Association for Computational Linguistics (2022). https://​doi.​org/​10.​18653/​v1/​2022.​naacl-main.​342
13.
Zurück zum Zitat Josifoski, M., Sakota, M., Peyrard, M., West, R.: Exploiting asymmetry for synthetic training data generation: Synthie and the case of information extraction. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, 6-10 December 2023. pp. 1555–1574. Association for Computational Linguistics (2023). https://doi.org/10.18653/V1/2023.EMNLP-MAIN.96 Josifoski, M., Sakota, M., Peyrard, M., West, R.: Exploiting asymmetry for synthetic training data generation: Synthie and the case of information extraction. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, 6-10 December 2023. pp. 1555–1574. Association for Computational Linguistics (2023). https://​doi.​org/​10.​18653/​V1/​2023.​EMNLP-MAIN.​96
14.
Zurück zum Zitat Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, J5-10 July 2020, pp. 7871–7880. Association for Computational Linguistics (2020). https://doi.org/10.18653/V1/2020.ACL-MAIN.703 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, J5-10 July 2020, pp. 7871–7880. Association for Computational Linguistics (2020). https://​doi.​org/​10.​18653/​V1/​2020.​ACL-MAIN.​703
15.
Zurück zum Zitat Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5-10 July 2020, pp. 7871–7880. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.703 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5-10 July 2020, pp. 7871–7880. Association for Computational Linguistics (2020). https://​doi.​org/​10.​18653/​v1/​2020.​acl-main.​703
16.
Zurück zum Zitat Liu, Y., Zhang, T., Liang, Z., Ji, H., McGuinness, D.L.: Seq2rdf: an end-to-end application for deriving triples from natural language text. In: van Erp, M., Atre, M., López, V., Srinivas, K., Fortuna, C. (eds.) Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey, USA, 8th - to -12th October 2018. CEUR Workshop Proceedings, vol. 2180. CEUR-WS.org (2018). https://ceur-ws.org/Vol-2180/paper-37.pdf Liu, Y., Zhang, T., Liang, Z., Ji, H., McGuinness, D.L.: Seq2rdf: an end-to-end application for deriving triples from natural language text. In: van Erp, M., Atre, M., López, V., Srinivas, K., Fortuna, C. (eds.) Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey, USA, 8th - to -12th October 2018. CEUR Workshop Proceedings, vol. 2180. CEUR-WS.org (2018). https://​ceur-ws.​org/​Vol-2180/​paper-37.​pdf
17.
Zurück zum Zitat Logeswaran, L., Chang, M., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July - 2 August 2019, Volume 1: Long Papers, pp. 3449–3460. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1335 Logeswaran, L., Chang, M., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July - 2 August 2019, Volume 1: Long Papers, pp. 3449–3460. Association for Computational Linguistics (2019). https://​doi.​org/​10.​18653/​v1/​p19-1335
18.
Zurück zum Zitat Ma, Y., Wang, A., Okazaki, N.: DREEAM: guiding attention with evidence for improving document-level relation extraction. In: Vlachos, A., Augenstein, I. (eds.) Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, 2-6 May 2023, pp. 1963–1975. Association for Computational Linguistics (2023). https://doi.org/10.18653/V1/2023.EACL-MAIN.145 Ma, Y., Wang, A., Okazaki, N.: DREEAM: guiding attention with evidence for improving document-level relation extraction. In: Vlachos, A., Augenstein, I. (eds.) Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, 2-6 May 2023, pp. 1963–1975. Association for Computational Linguistics (2023). https://​doi.​org/​10.​18653/​V1/​2023.​EACL-MAIN.​145
19.
Zurück zum Zitat Miwa, M., Bansal, M.: End-to-end relation extraction using lstms on sequences and tree structures. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, 7-12 August 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics (2016). https://doi.org/10.18653/v1/p16-1105 Miwa, M., Bansal, M.: End-to-end relation extraction using lstms on sequences and tree structures. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, 7-12 August 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics (2016). https://​doi.​org/​10.​18653/​v1/​p16-1105
21.
Zurück zum Zitat Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional neural networks. In: Blunsom, P., Cohen, S.B., Dhillon, P.S., Liang, P. (eds.) Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, VS@NAACL-HLT 2015, June 5, 2015, Denver, Colorado, USA. pp. 39–48. The Association for Computational Linguistics (2015). https://doi.org/10.3115/v1/w15-1506 Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional neural networks. In: Blunsom, P., Cohen, S.B., Dhillon, P.S., Liang, P. (eds.) Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, VS@NAACL-HLT 2015, June 5, 2015, Denver, Colorado, USA. pp. 39–48. The Association for Computational Linguistics (2015). https://​doi.​org/​10.​3115/​v1/​w15-1506
22.
Zurück zum Zitat Ni, J., Florian, R.: Neural cross-lingual relation extraction based on bilingual word embedding mapping. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3-7 November 2019, pp. 399–409. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1038 Ni, J., Florian, R.: Neural cross-lingual relation extraction based on bilingual word embedding mapping. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3-7 November 2019, pp. 399–409. Association for Computational Linguistics (2019). https://​doi.​org/​10.​18653/​v1/​D19-1038
23.
Zurück zum Zitat Ni, J., Rossiello, G., Gliozzo, A., Florian, R.: A generative model for relation extraction and classification. CoRR abs/ arXiv: 2202.13229 (2022) Ni, J., Rossiello, G., Gliozzo, A., Florian, R.: A generative model for relation extraction and classification. CoRR abs/ arXiv:​ 2202.​13229 (2022)
25.
27.
Zurück zum Zitat Raiman, J.: Deeptype 2: Superhuman entity linking, all you need is type interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8028–8035 (2022) Raiman, J.: Deeptype 2: Superhuman entity linking, all you need is type interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8028–8035 (2022)
28.
Zurück zum Zitat Raiman, J., Raiman, O.: Deeptype: multilingual entity linking by neural type system evolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Raiman, J., Raiman, O.: Deeptype: multilingual entity linking by neural type system evolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
29.
Zurück zum Zitat dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, 26-31 July 2015, Beijing, China, Volume 1: Long Papers, pp. 626–634. The Association for Computer Linguistics (2015). https://doi.org/10.3115/v1/p15-1061 dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, 26-31 July 2015, Beijing, China, Volume 1: Long Papers, pp. 626–634. The Association for Computer Linguistics (2015). https://​doi.​org/​10.​3115/​v1/​p15-1061
30.
Zurück zum Zitat Shavarani, H., Sarkar, A.: Spel: Structured prediction for entity linking. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, 6-10 December 2023, pp. 11123–11137. Association for Computational Linguistics (2023). https://doi.org/10.18653/V1/2023.EMNLP-MAIN.686 Shavarani, H., Sarkar, A.: Spel: Structured prediction for entity linking. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, 6-10 December 2023, pp. 11123–11137. Association for Computational Linguistics (2023). https://​doi.​org/​10.​18653/​V1/​2023.​EMNLP-MAIN.​686
31.
Zurück zum Zitat Soares, L.B., FitzGerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: Distributional similarity for relation learning. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July - 2 August 2019, Volume 1: Long Papers, pp. 2895–2905. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1279 Soares, L.B., FitzGerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: Distributional similarity for relation learning. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July - 2 August 2019, Volume 1: Long Papers, pp. 2895–2905. Association for Computational Linguistics (2019). https://​doi.​org/​10.​18653/​v1/​p19-1279
32.
Zurück zum Zitat Sui, D., Wang, C., Chen, Y., Liu, K., Zhao, J., Bi, W.: Set generation networks for end-to-end knowledge base population. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 9650–9660. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.760 Sui, D., Wang, C., Chen, Y., Liu, K., Zhao, J., Bi, W.: Set generation networks for end-to-end knowledge base population. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 9650–9660. Association for Computational Linguistics (2021). https://​doi.​org/​10.​18653/​v1/​2021.​emnlp-main.​760
34.
Zurück zum Zitat Trisedya, B.D., Weikum, G., Qi, J., Zhang, R.: Neural relation extraction for knowledge base enrichment. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July - 2 August 2019, Volume 1: Long Papers, pp. 229–240. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1023 Trisedya, B.D., Weikum, G., Qi, J., Zhang, R.: Neural relation extraction for knowledge base enrichment. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July - 2 August 2019, Volume 1: Long Papers, pp. 229–240. Association for Computational Linguistics (2019). https://​doi.​org/​10.​18653/​v1/​p19-1023
35.
Zurück zum Zitat Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16-20 November 2020. pp. 6397–6407. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.519 Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16-20 November 2020. pp. 6397–6407. Association for Computational Linguistics (2020). https://​doi.​org/​10.​18653/​v1/​2020.​emnlp-main.​519
36.
Zurück zum Zitat Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Hajic, J., Tsujii, J. (eds.) COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, 23-29 August 2014, Dublin, Ireland, pp. 2335–2344. ACL (2014), https://aclanthology.org/C14-1220/ Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Hajic, J., Tsujii, J. (eds.) COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, 23-29 August 2014, Dublin, Ireland, pp. 2335–2344. ACL (2014), https://​aclanthology.​org/​C14-1220/​
37.
Zurück zum Zitat Zhang, R.H., Liu, Q., Fan, A.X., Ji, H., Zeng, D., Cheng, F., Kawahara, D., Kurohashi, S.: Minimize exposure bias of seq2seq models in joint entity and relation extraction. In: Cohn, T., He, Y., Liu, Y. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020. Findings of ACL, vol. EMNLP 2020, pp. 236–246. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.23 Zhang, R.H., Liu, Q., Fan, A.X., Ji, H., Zeng, D., Cheng, F., Kawahara, D., Kurohashi, S.: Minimize exposure bias of seq2seq models in joint entity and relation extraction. In: Cohn, T., He, Y., Liu, Y. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020. Findings of ACL, vol. EMNLP 2020, pp. 236–246. Association for Computational Linguistics (2020). https://​doi.​org/​10.​18653/​v1/​2020.​findings-emnlp.​23
38.
Zurück zum Zitat Zhang, S., Ng, P., Wang, Z., Xiang, B.: Reknow: Enhanced knowledge for joint entity and relation extraction. CoRR abs/ arXiv: 2206.05123 (2022) Zhang, S., Ng, P., Wang, Z., Xiang, B.: Reknow: Enhanced knowledge for joint entity and relation extraction. CoRR abs/ arXiv:​ 2206.​05123 (2022)
39.
Zurück zum Zitat Zhong, Z., Chen, D.: A frustratingly easy approach for entity and relation extraction. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, 6-11 June 2021, pp. 50–61. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.naacl-main.5 Zhong, Z., Chen, D.: A frustratingly easy approach for entity and relation extraction. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, 6-11 June 2021, pp. 50–61. Association for Computational Linguistics (2021). https://​doi.​org/​10.​18653/​v1/​2021.​naacl-main.​5
Metadaten
Titel
DISCIE–Discriminative Closed Information Extraction
verfasst von
Cedric Möller
Ricardo Usbeck
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-77850-6_2