Skip to main content

2025 | OriginalPaper | Buchkapitel

DisCo-FEND: Social Context Veracity Dissemination Consistency-Guided Case Reasoning for Few-Shot Fake News Detection

verfasst von : Weiqiang Jin, Ningwei Wang, Tao Tao, Mengying Jiang, Xiaotian Wang, Biao Zhao, Hao Wu, Haibin Duan, Guang Yang

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development of the Internet, traditional news channels are being supplanted, leading to an increased prevalence of fake news. Mainstream pre-trained language models (PLMs)-based fake news detection methods follow the ‘pre-training and fine-tuning’ paradigm, relying on full supervision and heavily dependent on large, high-quality datasets. In contrast to these methods, “pre-trained and prompt-tuning” offers more efficient learning, especially in data-scarce scenarios. Meanwhile, extensive analysis of social patterns reveals a tendency driven by user psychology and behavior: users often disseminate information that aligns with their pre-existing beliefs, thereby reinforcing and solidifying their convictions. This phenomenon is termed “social context veracity dissemination consistency”. Inspired by this phenomenon, we propose DisCo-FEND, A social context veracity Dissemination Consistency-guided case reasoning augmentation for the Fake News Detection (FEND) task. During model inference, we adopt a novel strategy that enhances reasoning by using multiple FEND cases. It leverages multiple news cases with higher dissemination consistency to refine predictions. Additionally, a high-quality label words acquisition approach and an adaptive weight allocation-based multi-label words mapping strategy improves the convergence and generalization of DisCo-FEND.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Neo4j: https://​neo4j.​com/​ [Accessed on 2024.03].
 
2
Nebula Graph: https://​www.​nebula-graph.​com.​cn/​ [Accessed on 2023.03].
 
3
Princeton WordNet: https://​wordnet.​princeton.​edu/​ [Accessed on 2024.02].
 
Literatur
2.
Zurück zum Zitat Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/N19-1423 Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (2019). https://​doi.​org/​10.​18653/​v1/​N19-1423
4.
Zurück zum Zitat Hu, S., et al.: Knowledgeable prompt-tuning: incorporating knowledge into prompt verbalizer for text classification. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, pp. 2225–2240. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.acl-long.158 Hu, S., et al.: Knowledgeable prompt-tuning: incorporating knowledge into prompt verbalizer for text classification. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, pp. 2225–2240. Association for Computational Linguistics (2022). https://​doi.​org/​10.​18653/​v1/​2022.​acl-long.​158
6.
Zurück zum Zitat Ma, R., et al.: Template-free prompt tuning for few-shot NER. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, United States, pp. 5721–5732. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.naacl-main.420 Ma, R., et al.: Template-free prompt tuning for few-shot NER. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, United States, pp. 5721–5732. Association for Computational Linguistics (2022). https://​doi.​org/​10.​18653/​v1/​2022.​naacl-main.​420
7.
Zurück zum Zitat Nan, Q., Cao, J., Zhu, Y., Wang, Y., Li, J.: Mdfend: multi-domain fake news detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM 2021, pp. 3343–3347. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3459637.3482139 Nan, Q., Cao, J., Zhu, Y., Wang, Y., Li, J.: Mdfend: multi-domain fake news detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM 2021, pp. 3343–3347. Association for Computing Machinery, New York (2021). https://​doi.​org/​10.​1145/​3459637.​3482139
8.
Zurück zum Zitat Nguyen, V.H., Sugiyama, K., Nakov, P., Kan, M.Y.: Fang: leveraging social context for fake news detection using graph representation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1165–1174. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3412046 Nguyen, V.H., Sugiyama, K., Nakov, P., Kan, M.Y.: Fang: leveraging social context for fake news detection using graph representation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1165–1174. Association for Computing Machinery, New York (2020). https://​doi.​org/​10.​1145/​3340531.​3412046
11.
Zurück zum Zitat Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating fake news: a survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol. 10(3) (2019). https://doi.org/10.1145/3305260 Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating fake news: a survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol. 10(3) (2019). https://​doi.​org/​10.​1145/​3305260
12.
Zurück zum Zitat Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: defend: explainable fake news detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 395–405. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3292500.3330935 Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: defend: explainable fake news detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 395–405. Association for Computing Machinery, New York (2019). https://​doi.​org/​10.​1145/​3292500.​3330935
13.
Zurück zum Zitat Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context and spatialtemporal information for studying fake news on social media (2019) Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context and spatialtemporal information for studying fake news on social media (2019)
15.
Zurück zum Zitat Wu, J., Li, S., Deng, A., Xiong, M., Hooi, B.: Prompt-and-align: prompt-based social alignment for few-shot fake news detection. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, pp. 2726–2736. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3583780.3615015 Wu, J., Li, S., Deng, A., Xiong, M., Hooi, B.: Prompt-and-align: prompt-based social alignment for few-shot fake news detection. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, pp. 2726–2736. Association for Computing Machinery, New York (2023). https://​doi.​org/​10.​1145/​3583780.​3615015
16.
Zurück zum Zitat Zhou, R., et al.: MELM: data augmentation with masked entity language modeling for low-resource NER. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, pp. 2251–2262. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.acl-long.160 Zhou, R., et al.: MELM: data augmentation with masked entity language modeling for low-resource NER. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, pp. 2251–2262. Association for Computational Linguistics (2022). https://​doi.​org/​10.​18653/​v1/​2022.​acl-long.​160
Metadaten
Titel
DisCo-FEND: Social Context Veracity Dissemination Consistency-Guided Case Reasoning for Few-Shot Fake News Detection
verfasst von
Weiqiang Jin
Ningwei Wang
Tao Tao
Mengying Jiang
Xiaotian Wang
Biao Zhao
Hao Wu
Haibin Duan
Guang Yang
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0576-7_23