Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.10.2016 | Ausgabe 1/2018 Open Access

Foundations of Computational Mathematics 1/2018

Discrete Moving Frames on Lattice Varieties and Lattice-Based Multispaces

Foundations of Computational Mathematics > Ausgabe 1/2018
Gloria Marí Beffa, Elizabeth L. Mansfield
Wichtige Hinweise
Communicated by Peter Olver.
This paper was supported by ELM’s EPSRC Grant EP/H024018/1, GMB’s NSF Grant DMS #1405722.


In this paper, we develop the theory of the discrete moving frame in two different ways. In the first half of the paper, we consider a discrete moving frame defined on a lattice variety and the equivalence classes of global syzygies that result from the first fundamental group of the variety. In the second half, we consider the continuum limit of discrete moving frames as a local lattice coalesces to a point. To achieve a well-defined limit of discrete frames, we construct multispace, a generalisation of the jet bundle that also generalises Olver’s one-dimensional construction. Using interpolation to provide coordinates, we prove that it is a manifold containing the usual jet bundle as a submanifold. We show that continuity of a multispace moving frame ensures that the discrete moving frame converges to a continuous one as lattices coalesce. The smooth frame is, at the same time, the restriction of the multispace frame to the embedded jet bundle. We prove further that the discrete invariants and syzygies approximate their smooth counterparts. In effect, a frame on multispace allows smooth frames and their discretisations to be studied simultaneously. In our last chapter we discuss two important applications, one to the discrete variational calculus, and the second to discrete integrable systems. Finally, in an appendix, we discuss a more general result concerning equicontinuous families of discretisations of moving frames, which are consistent with a smooth frame.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Foundations of Computational Mathematics 1/2018 Zur Ausgabe

Premium Partner