Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Calcolo 4/2020

01.12.2020

Discrete projection methods for Hammerstein integral equations on the half-line

verfasst von: Nilofar Nahid, Gnaneshwar Nelakanti

Erschienen in: Calcolo | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this paper, we study discrete projection methods for solving the Hammerstein integral equations on the half-line with a smooth kernel using piecewise polynomial basis functions. We show that discrete Galerkin/discrete collocation methods converge to the exact solution with order \({\mathcal {O}}(n^{-min\{r, d\}}),\) whereas iterated discrete Galerkin/iterated discrete collocation methods converge to the exact solution with order \({\mathcal {O}}(n^{-min\{2r, d\}}),\) where \(n^{-1}\) is the maximum norm of the graded mesh and r denotes the order of the piecewise polynomial employed and \(d-1\) is the degree of precision of quadrature formula. We also show that iterated discrete multi-Galerkin/iterated discrete multi-collocation methods converge to the exact solution with order \({\mathcal {O}}(n^{-min\{4r, d\}})\). Hence by choosing sufficiently accurate numerical quadrature rule, we show that the convergence rates in discrete projection and discrete multi-projection methods are preserved. Numerical examples are given to uphold the theoretical results.
Literatur
1.
Zurück zum Zitat Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comput. Appl. Math. 353, 253–264 (2019) MathSciNetCrossRef Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comput. Appl. Math. 353, 253–264 (2019) MathSciNetCrossRef
2.
Zurück zum Zitat Allouch, C., Sbibih, D., Tahrichi, M.: Numerical solutions of weakly singular Hammerstein integral equations. Appl. Math. Comput. 329, 118–128 (2018) MathSciNetMATH Allouch, C., Sbibih, D., Tahrichi, M.: Numerical solutions of weakly singular Hammerstein integral equations. Appl. Math. Comput. 329, 118–128 (2018) MathSciNetMATH
3.
Zurück zum Zitat Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations. J. Comput. Appl. Math. 258, 30–41 (2014) MathSciNetCrossRef Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations. J. Comput. Appl. Math. 258, 30–41 (2014) MathSciNetCrossRef
4.
Zurück zum Zitat Amini, S., Sloan, I.H.: Collocation methods for the second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2, 1–30 (1989) CrossRef Amini, S., Sloan, I.H.: Collocation methods for the second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2, 1–30 (1989) CrossRef
5.
Zurück zum Zitat Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half-line. J. Integral Equ. Appl. 4, 1–14 (1992) MathSciNetCrossRef Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half-line. J. Integral Equ. Appl. 4, 1–14 (1992) MathSciNetCrossRef
6.
Zurück zum Zitat Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half-line. The Wiener-Hopf case. University of NSW, Sydney (1988) MATH Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half-line. The Wiener-Hopf case. University of NSW, Sydney (1988) MATH
7.
Zurück zum Zitat Assari, P.: The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions. Filomat 33, 667–682 (2019) MathSciNetCrossRef Assari, P.: The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions. Filomat 33, 667–682 (2019) MathSciNetCrossRef
8.
Zurück zum Zitat Assari, P., Dehghan, M.: A meshless discrete Galerkin method based on the free shape parameter radial basis functions for solving Hammerstein integral equations. Numer. Math. Theory Methods Appl. 11, 540–568 (2018) MathSciNetCrossRef Assari, P., Dehghan, M.: A meshless discrete Galerkin method based on the free shape parameter radial basis functions for solving Hammerstein integral equations. Numer. Math. Theory Methods Appl. 11, 540–568 (2018) MathSciNetCrossRef
9.
Zurück zum Zitat Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9, 75–104 (2019) MathSciNet Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9, 75–104 (2019) MathSciNet
10.
Zurück zum Zitat Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98, 2064–2084 (2019) MathSciNetCrossRef Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98, 2064–2084 (2019) MathSciNetCrossRef
11.
Zurück zum Zitat Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electron. Networks Devices Fields 32, e2488 (2019) CrossRef Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electron. Networks Devices Fields 32, e2488 (2019) CrossRef
12.
Zurück zum Zitat Atkinson, K.E., Bogomolny, A.: The discrete Galerkin method for integral equations. Math. Comput. 48, 595–616 (1987) MathSciNetCrossRef Atkinson, K.E., Bogomolny, A.: The discrete Galerkin method for integral equations. Math. Comput. 48, 595–616 (1987) MathSciNetCrossRef
13.
Zurück zum Zitat Atkinson, K.E., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13, 195–213 (1993) MathSciNetCrossRef Atkinson, K.E., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13, 195–213 (1993) MathSciNetCrossRef
14.
Zurück zum Zitat Atkinson, K.E., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988) MathSciNetCrossRef Atkinson, K.E., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988) MathSciNetCrossRef
15.
Zurück zum Zitat Browder, F. E.: Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type. Contributions to Nonlinear Functional Analysis, pp. 425–500 (1971) Browder, F. E.: Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type. Contributions to Nonlinear Functional Analysis, pp. 425–500 (1971)
16.
Zurück zum Zitat Chandler, G.A., Graham, I.G.: The convergence of Nyström methods for wiener-hopf equations. Numer. Math. 52, 345–364 (1987) CrossRef Chandler, G.A., Graham, I.G.: The convergence of Nyström methods for wiener-hopf equations. Numer. Math. 52, 345–364 (1987) CrossRef
17.
Zurück zum Zitat Chen, Z., Long, G., Nelakanti, G.: The discrete multi-projection method for Fredholm integral equations of the second kind. J. Integral Equ. Appl. 19, 143–162 (2007) MathSciNetCrossRef Chen, Z., Long, G., Nelakanti, G.: The discrete multi-projection method for Fredholm integral equations of the second kind. J. Integral Equ. Appl. 19, 143–162 (2007) MathSciNetCrossRef
18.
Zurück zum Zitat Corduneanu, C.: Integral equations and stability of feedback systems. Academic Press Inc, Cambridge (1973) MATH Corduneanu, C.: Integral equations and stability of feedback systems. Academic Press Inc, Cambridge (1973) MATH
19.
Zurück zum Zitat Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38, 549–574 (2017) MathSciNetCrossRef Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38, 549–574 (2017) MathSciNetCrossRef
20.
Zurück zum Zitat Das, P., Nelakanti, G.: Discrete legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95, 465–489 (2018) MathSciNetCrossRef Das, P., Nelakanti, G.: Discrete legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95, 465–489 (2018) MathSciNetCrossRef
21.
Zurück zum Zitat Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comput. Appl. Math. 278, 293–305 (2015) MathSciNetCrossRef Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comput. Appl. Math. 278, 293–305 (2015) MathSciNetCrossRef
22.
Zurück zum Zitat Das, P., Nelakanti, G.: Superconvergence results for the iterated discrete legendre Galerkin method for Hammerstein integral equations. J. Comput. Sci. Comput. Math. 5, 75–83 (2015) CrossRef Das, P., Nelakanti, G.: Superconvergence results for the iterated discrete legendre Galerkin method for Hammerstein integral equations. J. Comput. Sci. Comput. Math. 5, 75–83 (2015) CrossRef
23.
Zurück zum Zitat Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4, 47–68 (1992) MathSciNetCrossRef Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4, 47–68 (1992) MathSciNetCrossRef
24.
Zurück zum Zitat Finn, G.: Studies in spectral line formation: I. formulation and simple applications. J. Quant. Spectrosc. Radiat. Transfer 8, 1675–1703 (1968) CrossRef Finn, G.: Studies in spectral line formation: I. formulation and simple applications. J. Quant. Spectrosc. Radiat. Transfer 8, 1675–1703 (1968) CrossRef
25.
Zurück zum Zitat Ganesh, M., Joshi, M.: Numerical solutions of nonlinear integral equations on the half-line. Numer. Funct. Anal. Optim. 10, 1115–1138 (1989) MathSciNetCrossRef Ganesh, M., Joshi, M.: Numerical solutions of nonlinear integral equations on the half-line. Numer. Funct. Anal. Optim. 10, 1115–1138 (1989) MathSciNetCrossRef
26.
Zurück zum Zitat Graham, I.G., Mendes, W.R.: Nyström-product integration for wiener-hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9, 261–284 (1989) MathSciNetCrossRef Graham, I.G., Mendes, W.R.: Nyström-product integration for wiener-hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9, 261–284 (1989) MathSciNetCrossRef
27.
Zurück zum Zitat Guenther, R.B., Lee, J.W., O’Regan, D.: Boundary value problems on infinite intervals and semiconductor devices. J. Math. Anal. Appl. 116, 335–348 (1986) MathSciNetCrossRef Guenther, R.B., Lee, J.W., O’Regan, D.: Boundary value problems on infinite intervals and semiconductor devices. J. Math. Anal. Appl. 116, 335–348 (1986) MathSciNetCrossRef
28.
Zurück zum Zitat Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997) MATH Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997) MATH
29.
Zurück zum Zitat Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96, 237–271 (1998) MathSciNetMATH Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96, 237–271 (1998) MathSciNetMATH
30.
Zurück zum Zitat Kaneko, H., Noren, R., Padilla, P.: Superconvergence of the iterated collocation methods for Hammerstein equations. J. Comput. Appl. Math. 80, 335–349 (1997) MathSciNetCrossRef Kaneko, H., Noren, R., Padilla, P.: Superconvergence of the iterated collocation methods for Hammerstein equations. J. Comput. Appl. Math. 80, 335–349 (1997) MathSciNetCrossRef
31.
Zurück zum Zitat Kumar, S.: A discrete collocation-type method for Hammerstein equations. SIAM J. Numer. Anal. 25, 328–341 (1988) MathSciNetCrossRef Kumar, S.: A discrete collocation-type method for Hammerstein equations. SIAM J. Numer. Anal. 25, 328–341 (1988) MathSciNetCrossRef
32.
Zurück zum Zitat Kulkarni, R.P., Gnaneshwar, N.: Iterated discrete polynomially based Galerkin methods. Appl. Math. Comput. 146, 153–165 (2003) MathSciNetMATH Kulkarni, R.P., Gnaneshwar, N.: Iterated discrete polynomially based Galerkin methods. Appl. Math. Comput. 146, 153–165 (2003) MathSciNetMATH
33.
Zurück zum Zitat Moré, J.J., Cosnard, M.Y.: Algorithm 554: Brentm, a fortran subroutine for the numerical solution of nonlinear equations [c5]. Trans. Math. Softw. (TOMS) 6, 240–251 (1980) CrossRef Moré, J.J., Cosnard, M.Y.: Algorithm 554: Brentm, a fortran subroutine for the numerical solution of nonlinear equations [c5]. Trans. Math. Softw. (TOMS) 6, 240–251 (1980) CrossRef
34.
Zurück zum Zitat Michael, G.: Improved convergence rates for some discrete Galerkin methods. J. Integral Equ. Appl. 8, 307–335 (1996) MathSciNetCrossRef Michael, G.: Improved convergence rates for some discrete Galerkin methods. J. Integral Equ. Appl. 8, 307–335 (1996) MathSciNetCrossRef
35.
Zurück zum Zitat Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019) MathSciNetCrossRef Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019) MathSciNetCrossRef
36.
37.
Zurück zum Zitat Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for nonlinear equations. USSR Comput. Math. Math. Phys. 7, 1–41 (1967) CrossRef Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for nonlinear equations. USSR Comput. Math. Math. Phys. 7, 1–41 (1967) CrossRef
Metadaten
Titel
Discrete projection methods for Hammerstein integral equations on the half-line
verfasst von
Nilofar Nahid
Gnaneshwar Nelakanti
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 4/2020
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00386-2

Weitere Artikel der Ausgabe 4/2020

Calcolo 4/2020 Zur Ausgabe

Premium Partner