Skip to main content

2018 | OriginalPaper | Buchkapitel

Discriminant Analysis Based EMG Pattern Recognition for Hand Function Rehabilitation

verfasst von : Jia Deng, Jian Niu, Kun Wang, Li Xie, Geng Yang

Erschienen in: Wireless Mobile Communication and Healthcare

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electromyographic (EMG) signal is playing an important role on hand function training as a neuromuscular rehabilitation tool. Various pattern recognition algorithms (PRAs) have been compared and evaluated in previous research, and Linear Discriminant Analysis (LDA) showed the higher offline accuracy for motion classification. However, it is rarely of comparison for different types of Discriminant Analysis (DA), and the surface electrodes are common methods for signal acquisition. This paper proposes to evaluate the offline performance of LDA and other types of DA, and using Myo armband for recording signals. The offline data was acquired by Myo armband, processing recognizing the data in BioPatRec, an open source platform for motion classification and hand prosthetics control. From the results of average offline accuracy, training time, and testing time of the five types, LDA and Quadratic Discriminant Analysis (QDA) have the better performance than others, and LDA is the fastest algorithm with simple computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jiang, N., Falla, D., D’Avella, A.: Myoelectric control in neurorehabilitation. J. Crit. Rev. Biomed. Eng. 38(4), 381 (2010)CrossRef Jiang, N., Falla, D., D’Avella, A.: Myoelectric control in neurorehabilitation. J. Crit. Rev. Biomed. Eng. 38(4), 381 (2010)CrossRef
2.
Zurück zum Zitat Hargrove, L., Englehart, K., Hudgins, B.: A comparison of surface and intramuscular myoelectric signal classification. J. IEEE Trans. Biomed. Eng. 54, 847–853 (2007)CrossRef Hargrove, L., Englehart, K., Hudgins, B.: A comparison of surface and intramuscular myoelectric signal classification. J. IEEE Trans. Biomed. Eng. 54, 847–853 (2007)CrossRef
3.
Zurück zum Zitat Chen, M., Ho, S.K., Zhou, H.F., Pang, P.M.K., Hu, X.L.: Interactive rehabilitation robot for hand function training. In: IEEE International Conference on Rehabilitation Robotics, pp. 777–780 (2009) Chen, M., Ho, S.K., Zhou, H.F., Pang, P.M.K., Hu, X.L.: Interactive rehabilitation robot for hand function training. In: IEEE International Conference on Rehabilitation Robotics, pp. 777–780 (2009)
4.
Zurück zum Zitat Fasoli, S.E., Krebs, H.I., Hogan, N.: Robotic technology and stroke rehabilitation: translating research into practice. J. Top. Stroke Rehabil. 11, 11–19 (2004)CrossRef Fasoli, S.E., Krebs, H.I., Hogan, N.: Robotic technology and stroke rehabilitation: translating research into practice. J. Top. Stroke Rehabil. 11, 11–19 (2004)CrossRef
5.
Zurück zum Zitat Huang, Y., Englehart, K.B., Hudgins, B.: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. J. IEEE Trans. Biomed. Eng. 52(11), 1801 (2005)CrossRef Huang, Y., Englehart, K.B., Hudgins, B.: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. J. IEEE Trans. Biomed. Eng. 52(11), 1801 (2005)CrossRef
6.
Zurück zum Zitat Le, M.D.K., Gale, T.J., Jiang, D., Olivier, J.C., Ortiz-Catalan, M.: Multi-layer perceptron training algorithms for pattern recognition of myoelectric signals. In: Biomedical Engineering International Conference, pp. 1–5 (2013) Le, M.D.K., Gale, T.J., Jiang, D., Olivier, J.C., Ortiz-Catalan, M.: Multi-layer perceptron training algorithms for pattern recognition of myoelectric signals. In: Biomedical Engineering International Conference, pp. 1–5 (2013)
7.
Zurück zum Zitat Hudgins, B., Parker, P., Scott, R.N.: A new strategy for multifunction myoelectric control. J. IEEE Trans. Biomed. Eng. 40(1), 82–94 (1993)CrossRef Hudgins, B., Parker, P., Scott, R.N.: A new strategy for multifunction myoelectric control. J. IEEE Trans. Biomed. Eng. 40(1), 82–94 (1993)CrossRef
8.
Zurück zum Zitat Amsüss, S., Paredes, L.P., Rudigkeit, N., Graimann, B., Herrmann, M.J., Farina, D.: Long term stability of surface EMG pattern classification for prosthetic control. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3622–3625 (2013) Amsüss, S., Paredes, L.P., Rudigkeit, N., Graimann, B., Herrmann, M.J., Farina, D.: Long term stability of surface EMG pattern classification for prosthetic control. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3622–3625 (2013)
9.
Zurück zum Zitat Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. J. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)CrossRef Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. J. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)CrossRef
10.
Zurück zum Zitat Zhang, H., Zhao, Y., Yao, F., Xu, L., Shang, P., Li, G.: An adaptation strategy of using LDA classifier for EMG pattern recognition. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4267–4270 (2013) Zhang, H., Zhao, Y., Yao, F., Xu, L., Shang, P., Li, G.: An adaptation strategy of using LDA classifier for EMG pattern recognition. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4267–4270 (2013)
11.
Zurück zum Zitat Ortiz-Catalan, M., Brånemark, R., Håkansson, B.: BioPatRec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms. J. Source Code for Biol. Med. 8(1), 11 (2013)CrossRef Ortiz-Catalan, M., Brånemark, R., Håkansson, B.: BioPatRec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms. J. Source Code for Biol. Med. 8(1), 11 (2013)CrossRef
12.
Zurück zum Zitat Hargrove, L.J., Englehart, K., Hudgins, B.: A comparison of surface and intramuscular myoelectric signal classification. J. IEEE Trans. Biomed. Eng. 54(5), 847–853 (2007)CrossRef Hargrove, L.J., Englehart, K., Hudgins, B.: A comparison of surface and intramuscular myoelectric signal classification. J. IEEE Trans. Biomed. Eng. 54(5), 847–853 (2007)CrossRef
14.
Zurück zum Zitat Srivastava, S., Gupta, M.R., Frigyik, B.A.: Bayesian quadratic discriminant analysis. J. Mach. Learn. Res. 8(8), 1277–1305 (2007)MathSciNetMATH Srivastava, S., Gupta, M.R., Frigyik, B.A.: Bayesian quadratic discriminant analysis. J. Mach. Learn. Res. 8(8), 1277–1305 (2007)MathSciNetMATH
15.
Zurück zum Zitat Chen, X., Zhang, D., Zhu, X.: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. J. Neuroeng. Rehabil. 10(1), 44 (2013)CrossRef Chen, X., Zhang, D., Zhu, X.: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. J. Neuroeng. Rehabil. 10(1), 44 (2013)CrossRef
Metadaten
Titel
Discriminant Analysis Based EMG Pattern Recognition for Hand Function Rehabilitation
verfasst von
Jia Deng
Jian Niu
Kun Wang
Li Xie
Geng Yang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-98551-0_24

Premium Partner