Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.08.2018 | Ausgabe 2/2019

Neural Processing Letters 2/2019

Discriminative Feature Learning via Sparse Autoencoders with Label Consistency Constraints

Zeitschrift:
Neural Processing Letters > Ausgabe 2/2019
Autoren:
Cong Hu, Xiao-Jun Wu, Zhen-Qiu Shu
Wichtige Hinweise
This work was supported by the 111 Project of Chinese Ministry of Education under Grant B12018, the Grants of the National Natural Science Foundation of China (Grant 61373055, 61672265 and 61603159) and Natural Science Foundation of Jiangsu Province of China under Grant BK20160293.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Autoencoders have been successfully used to build deep hierarchical models of data. However, a deep architecture usually needs further supervised fine-tuning to obtain better discriminative capacity. To improve the discriminative capacity of deep hierarchical features, this paper proposes a new deterministic autoencoder, trained by a label consistency constraints algorithm that injects discriminative information to the network. We introduce the center loss as label consistency constraints to learn the hidden features of data and add it to the Sparse AutoEncoder to form a new autoencoder, namely Label Consistency Constrained Sparse AutoEncoders (LCCSAE). Specifically, the center loss learns the center of each class, and simultaneously penalizes the distances between the features and their corresponding class centers. In the end, autoencoders are stacked to form a deep architecture of LCCSAE for image classification tasks. To validate the effectiveness of LCCSAE, we compare it with other autoencoders in terms of the deeply learned features and the subsequent classification tasks on MNIST and CIFAR-bw datasets. Experimental results demonstrate the superiority of LCCSAE over other methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2019

Neural Processing Letters 2/2019 Zur Ausgabe