Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.03.2020 | Original Article | Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

Discriminative low-rank projection for robust subspace learning

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 10/2020
Autoren:
Zhihui Lai, Jiaqi Bao, Heng Kong, Minghua Wan, Guowei Yang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The robustness to outliers, noises, and corruptions has been paid more attention recently to increase the performance in linear feature extraction and image classification. As one of the most effective subspace learning methods, low-rank representation (LRR) can improve the robustness of an algorithm by exploring the global representative structure information among the samples. However, the traditional LRR cannot project the training samples into low-dimensional subspace with supervised information. Thus, in this paper, we integrate the properties of LRR with supervised dimensionality reduction techniques to obtain optimal low-rank subspace and discriminative projection at the same time. To achieve this goal, we proposed a novel model named Discriminative Low-Rank Projection (DLRP). Furthermore, DLRP can break the limitation of the small class problem which means the number of projections is bound by the number of classes. Our model can be solved by alternatively linearized alternating direction method with adaptive penalty and the singular value decomposition. Besides, the analyses of differences between DLRP and previous related models are shown. Extensive experiments conducted on various contaminated databases have confirmed the superiority of the proposed method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Zur Ausgabe