Skip to main content

2024 | OriginalPaper | Buchkapitel

Disease Spread Control in Cruise Ships: Monitoring, Simulation, and Decision Making

verfasst von : Georgios Triantafyllou, Panagiotis G. Kalozoumis, Eirini Cholopoulou, Dimitris K. Iakovidis

Erschienen in: The Blue Book

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cruise ships transfer diverse populations between different countries, offering unique travel experiences to thousands of people worldwide. The benefits of cruises in tourism and national economies are apparent; however, the closed environment of cruise ships can easily become an incubator of infectious diseases, spreading rapidly among passengers. Health recommendations and protocols have been issued by proper organizations to enable disease spread control, especially after COVID-19 (SARS-CoV-2) pandemic; however, their effective application by the ship’s crew still constitutes a challenge, considering the application scale. This chapter aims to provide a foundational model toward an automatic system contributing to disease spread monitoring and control in cruise ships. Such a system would contribute to limiting the dependencies on the human factor, and consequently to passengers’ safety. Also, it provides an overview of state-of-the-art disease monitoring and decision-making systems, as well as simulation methods enabling the prediction of disease evolution, considered as components of that model. A summary of research directions and conclusions are derived from the review study performed, offering a useful reference for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Batista, B., Dickenson, D., Gurski, K., et al.: Minimizing disease spread on a quarantined cruise ship: a model of COVID-19 with asymptomatic infections. Math. Biosci. 329, 108442 (2020)MathSciNetCrossRef Batista, B., Dickenson, D., Gurski, K., et al.: Minimizing disease spread on a quarantined cruise ship: a model of COVID-19 with asymptomatic infections. Math. Biosci. 329, 108442 (2020)MathSciNetCrossRef
2.
Zurück zum Zitat Moriarty, L.F., Plucinski, M.M., Marston, B.J., et al.: Public health responses to COVID-19 outbreaks on cruise ships—worldwide, February–March 2020. Morb. Mortal. Wkly Rep. 69, 347 (2020)CrossRef Moriarty, L.F., Plucinski, M.M., Marston, B.J., et al.: Public health responses to COVID-19 outbreaks on cruise ships—worldwide, February–March 2020. Morb. Mortal. Wkly Rep. 69, 347 (2020)CrossRef
3.
Zurück zum Zitat Mouchtouri, V.A., Koureas, M., Kyritsi, M., et al.: Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int. J. Hyg. Environ. Health. 230, 113599 (2020)CrossRef Mouchtouri, V.A., Koureas, M., Kyritsi, M., et al.: Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int. J. Hyg. Environ. Health. 230, 113599 (2020)CrossRef
5.
Zurück zum Zitat Hill, C.D.: Cruise ship travel. In: Travel Medicine, pp. 377–382. Elsevier, U.S.A (2019)CrossRef Hill, C.D.: Cruise ship travel. In: Travel Medicine, pp. 377–382. Elsevier, U.S.A (2019)CrossRef
6.
Zurück zum Zitat Delikhoon, M., Guzman, M., Nabizadeh, R., et al.: Modes of transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and factors influencing on the airborne transmission: a review. Int J Environ Res Public Health. 18, 395 (2021)CrossRef Delikhoon, M., Guzman, M., Nabizadeh, R., et al.: Modes of transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and factors influencing on the airborne transmission: a review. Int J Environ Res Public Health. 18, 395 (2021)CrossRef
7.
Zurück zum Zitat Bourouiba, L.: The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53, 473–508 (2021)CrossRef Bourouiba, L.: The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53, 473–508 (2021)CrossRef
8.
Zurück zum Zitat Carlson, K.M., Boczek, L.A., Chae, S., Ryu, H.: Legionellosis and recent advances in technologies for Legionella control in premise plumbing systems: a review. Water. 12, 676 (2020)CrossRef Carlson, K.M., Boczek, L.A., Chae, S., Ryu, H.: Legionellosis and recent advances in technologies for Legionella control in premise plumbing systems: a review. Water. 12, 676 (2020)CrossRef
9.
Zurück zum Zitat Leslie, E., Hinds, J., Hai, F.I.: Causes, factors, and control measures of opportunistic premise plumbing pathogens—a critical review. Appl. Sci. 11, 4474 (2021)CrossRef Leslie, E., Hinds, J., Hai, F.I.: Causes, factors, and control measures of opportunistic premise plumbing pathogens—a critical review. Appl. Sci. 11, 4474 (2021)CrossRef
10.
Zurück zum Zitat Muli R, Tomi J, others (2020) Supplying ships with safe drinking-water. Int. Marit. Health 71:123–128 Muli R, Tomi J, others (2020) Supplying ships with safe drinking-water. Int. Marit. Health 71:123–128
11.
Zurück zum Zitat Prussin II, A.J., Schwake, D.O., Marr, L.C.: Ten questions concerning the aerosolization and transmission of Legionella in the built environment. Build. Environ. 123, 684–695 (2017)CrossRef Prussin II, A.J., Schwake, D.O., Marr, L.C.: Ten questions concerning the aerosolization and transmission of Legionella in the built environment. Build. Environ. 123, 684–695 (2017)CrossRef
12.
Zurück zum Zitat Pitol, A.K., Julian, T.R.: Community transmission of SARS-CoV-2 by surfaces: risks and risk reduction strategies. Environ. Sci. Technol. Lett. 8, 263–269 (2021)CrossRef Pitol, A.K., Julian, T.R.: Community transmission of SARS-CoV-2 by surfaces: risks and risk reduction strategies. Environ. Sci. Technol. Lett. 8, 263–269 (2021)CrossRef
13.
Zurück zum Zitat Chen, T.: Fomites and the COVID-19 pandemic: an evidence review on its role in viral transmission, vol. 19, p. 1953. National Collaborating Centre for Environmental Health, Vancouver (2021) Chen, T.: Fomites and the COVID-19 pandemic: an evidence review on its role in viral transmission, vol. 19, p. 1953. National Collaborating Centre for Environmental Health, Vancouver (2021)
14.
Zurück zum Zitat WHO, others: Handbook for Management of Public Health Events on Board Ships. WHO, Geneva (2016) WHO, others: Handbook for Management of Public Health Events on Board Ships. WHO, Geneva (2016)
15.
Zurück zum Zitat World Health Organization, others: International Medical Guide for Ships, 3rd edn. WHO, Geneva World Health Organization, others: International Medical Guide for Ships, 3rd edn. WHO, Geneva
16.
Zurück zum Zitat Niku, S.B.: Introduction to Robotics: Analysis, Control, Applications. Wiley, U.S.A (2020) Niku, S.B.: Introduction to Robotics: Analysis, Control, Applications. Wiley, U.S.A (2020)
17.
Zurück zum Zitat Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer Science & Business Media, Germany (2007)CrossRef Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer Science & Business Media, Germany (2007)CrossRef
18.
Zurück zum Zitat Maeda, H., Sando, E., Toizumi, M., et al.: Epidemiology of coronavirus disease outbreak among crewmembers on cruise ship, Nagasaki City, Japan, April 2020. Emerg. Infect. Dis. 27, 2251 (2021)CrossRef Maeda, H., Sando, E., Toizumi, M., et al.: Epidemiology of coronavirus disease outbreak among crewmembers on cruise ship, Nagasaki City, Japan, April 2020. Emerg. Infect. Dis. 27, 2251 (2021)CrossRef
19.
Zurück zum Zitat Fong, B., Fong, A., Li, C.: Infectious disease and indoor air quality management in a cruise ship environment. In: Smart Ships, pp. 101–116. CRC Press, Boca Raton, U.S.A (2022)CrossRef Fong, B., Fong, A., Li, C.: Infectious disease and indoor air quality management in a cruise ship environment. In: Smart Ships, pp. 101–116. CRC Press, Boca Raton, U.S.A (2022)CrossRef
20.
Zurück zum Zitat Mihai, V., Rusu, L.: An overview of the ship ventilation systems and measures to avoid the spread of diseases. Inventions. 6, 55 (2021)CrossRef Mihai, V., Rusu, L.: An overview of the ship ventilation systems and measures to avoid the spread of diseases. Inventions. 6, 55 (2021)CrossRef
21.
Zurück zum Zitat Nolich, M., Spoladore, D., Carciotti, S., et al.: Cabin as a home: a novel comfort optimization framework for IoT equipped smart environments and applications on cruise ships. Sensors. 19, 1060 (2019)CrossRef Nolich, M., Spoladore, D., Carciotti, S., et al.: Cabin as a home: a novel comfort optimization framework for IoT equipped smart environments and applications on cruise ships. Sensors. 19, 1060 (2019)CrossRef
22.
Zurück zum Zitat Sága, Jr M., Bartoš, M., Zajacko, I., et al: An automated diagnostic and surveillance system for eliminating the community spread of infectious respiratory diseases in the industry. In: Advances in Design, Simulation and Manufacturing V: Proceedings of the 5th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2022, June 7–10, 2022, Poznan, Poland–Volume 1: Manufacturing and Materials Engineering. Springer, pp 94–103 (2022) Sága, Jr M., Bartoš, M., Zajacko, I., et al: An automated diagnostic and surveillance system for eliminating the community spread of infectious respiratory diseases in the industry. In: Advances in Design, Simulation and Manufacturing V: Proceedings of the 5th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE-2022, June 7–10, 2022, Poznan, Poland–Volume 1: Manufacturing and Materials Engineering. Springer, pp 94–103 (2022)
23.
Zurück zum Zitat Baig, M.M., GholamHosseini, H., Moqeem, A.A., et al.: A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. J. Med. Syst. 41, 1–9 (2017)CrossRef Baig, M.M., GholamHosseini, H., Moqeem, A.A., et al.: A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. J. Med. Syst. 41, 1–9 (2017)CrossRef
24.
Zurück zum Zitat Hoffman, J.S., Hirano, M., Panpradist, N., et al.: Passively sensing SARS-CoV-2 RNA in public transit buses. Sci. Total Environ. 821, 152790 (2022)CrossRef Hoffman, J.S., Hirano, M., Panpradist, N., et al.: Passively sensing SARS-CoV-2 RNA in public transit buses. Sci. Total Environ. 821, 152790 (2022)CrossRef
25.
Zurück zum Zitat Brewster, R.K., Chan, K., Allen, H., et al.: Future directions of infection control and risk management on military vessels: a narrative review. J. Public Health Emerg. 6, 33 (2022)CrossRef Brewster, R.K., Chan, K., Allen, H., et al.: Future directions of infection control and risk management on military vessels: a narrative review. J. Public Health Emerg. 6, 33 (2022)CrossRef
26.
Zurück zum Zitat Morawska, L., Tang, J.W., Bahnfleth, W., et al.: How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 142, 105832 (2020)CrossRef Morawska, L., Tang, J.W., Bahnfleth, W., et al.: How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 142, 105832 (2020)CrossRef
27.
Zurück zum Zitat Vardoulakis, S., Oyarce, D.A.E., Donner, E.: Transmission of COVID-19 and other infectious diseases in public washrooms: a systematic review. Sci. Total Environ. 803, 149932 (2022)CrossRef Vardoulakis, S., Oyarce, D.A.E., Donner, E.: Transmission of COVID-19 and other infectious diseases in public washrooms: a systematic review. Sci. Total Environ. 803, 149932 (2022)CrossRef
29.
Zurück zum Zitat Zhang, W., Xie, J., Gong, N., et al.: COVID-19 outbreaks on ships: analysis of three representative cases. Public Health Pract. 4, 100320 (2022)CrossRef Zhang, W., Xie, J., Gong, N., et al.: COVID-19 outbreaks on ships: analysis of three representative cases. Public Health Pract. 4, 100320 (2022)CrossRef
30.
Zurück zum Zitat Aouad, S., Maizate, A., Zakari, A., Yassine, S.: A comprehensive survey of smart city technologies for monitoring and controlling the epidemic spread of COVID-19. In: Proceedings of the 4th International Conference on Networking, Information Systems & Security. pp 1–6 (2021) Aouad, S., Maizate, A., Zakari, A., Yassine, S.: A comprehensive survey of smart city technologies for monitoring and controlling the epidemic spread of COVID-19. In: Proceedings of the 4th International Conference on Networking, Information Systems & Security. pp 1–6 (2021)
31.
Zurück zum Zitat Meraj, M., Alvi, S.A.M., Quasim, M.T., Haidar, S.W.: A critical review of detection and prediction of infectious disease using IOT sensors. In: 2021 second international conference on electronics and sustainable communication systems (ICESC). IEEE, pp 679–684 (2021) Meraj, M., Alvi, S.A.M., Quasim, M.T., Haidar, S.W.: A critical review of detection and prediction of infectious disease using IOT sensors. In: 2021 second international conference on electronics and sustainable communication systems (ICESC). IEEE, pp 679–684 (2021)
32.
Zurück zum Zitat Guk, K., Han, G., Lim, J., et al.: Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials. 9, 813 (2019)CrossRef Guk, K., Han, G., Lim, J., et al.: Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials. 9, 813 (2019)CrossRef
33.
Zurück zum Zitat Vairavan, M.: Thermal camera-based COVID-19 detection. In: Proceedings of Third International Conference on Intelligent Computing, Information and Control Systems: ICICCS 2021. Springer, pp 395–402 (2022) Vairavan, M.: Thermal camera-based COVID-19 detection. In: Proceedings of Third International Conference on Intelligent Computing, Information and Control Systems: ICICCS 2021. Springer, pp 395–402 (2022)
34.
Zurück zum Zitat Salman, N., Kemp, A.H., Khan, A., Noakes, C.: Real time wireless sensor network (WSN) based indoor air quality monitoring system. IFAC-PapersOnLine. 52, 324–327 (2019)CrossRef Salman, N., Kemp, A.H., Khan, A., Noakes, C.: Real time wireless sensor network (WSN) based indoor air quality monitoring system. IFAC-PapersOnLine. 52, 324–327 (2019)CrossRef
35.
Zurück zum Zitat Mohammed, M., Syamsudin, H., Al-Zubaidi, S., et al.: Novel COVID-19 detection and diagnosis system using IOT based smart helmet. Int. J. Psychosoc. Rehabil. 24, 2296–2303 (2020) Mohammed, M., Syamsudin, H., Al-Zubaidi, S., et al.: Novel COVID-19 detection and diagnosis system using IOT based smart helmet. Int. J. Psychosoc. Rehabil. 24, 2296–2303 (2020)
36.
Zurück zum Zitat Jain, S., Nehra, M., Kumar, R., et al.: Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens. Bioelectron. 179, 113074 (2021)CrossRef Jain, S., Nehra, M., Kumar, R., et al.: Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens. Bioelectron. 179, 113074 (2021)CrossRef
37.
Zurück zum Zitat Pal, A., Sankarasubbu, M.: Pay attention to the cough: early diagnosis of COVID-19 using interpretable symptoms embeddings with cough sound signal processing. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. pp 620–628 (2021) Pal, A., Sankarasubbu, M.: Pay attention to the cough: early diagnosis of COVID-19 using interpretable symptoms embeddings with cough sound signal processing. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. pp 620–628 (2021)
38.
Zurück zum Zitat Aly, M., Rahouma, K.H., Ramzy, S.M.: Pay attention to the speech: COVID-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings. Alex. Eng. J. 61, 3487–3500 (2022)CrossRef Aly, M., Rahouma, K.H., Ramzy, S.M.: Pay attention to the speech: COVID-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings. Alex. Eng. J. 61, 3487–3500 (2022)CrossRef
39.
Zurück zum Zitat Zhang, H., Srinivasan, R., Ganesan, V.: Low cost, multi-pollutant sensing system using raspberry Pi for indoor air quality monitoring. Sustainability. 13, 370 (2021)CrossRef Zhang, H., Srinivasan, R., Ganesan, V.: Low cost, multi-pollutant sensing system using raspberry Pi for indoor air quality monitoring. Sustainability. 13, 370 (2021)CrossRef
40.
Zurück zum Zitat Kanál, A.K., Tamás, K.: Assessment of indoor air quality of educational facilities using an IoT solution for a healthy learning environment. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). pp 1–6 (2020) Kanál, A.K., Tamás, K.: Assessment of indoor air quality of educational facilities using an IoT solution for a healthy learning environment. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). pp 1–6 (2020)
42.
Zurück zum Zitat Roskams, M., Haynes, B.: Predictive analytics in facilities management: a pilot study for predicting environmental comfort using wireless sensors. J. Facil. Manag. 17, 356–370 (2019)CrossRef Roskams, M., Haynes, B.: Predictive analytics in facilities management: a pilot study for predicting environmental comfort using wireless sensors. J. Facil. Manag. 17, 356–370 (2019)CrossRef
43.
Zurück zum Zitat Awotunde, J.B., Jimoh, R.G., Folorunso, S.O., et al.: Privacy and security concerns in IoT-based healthcare systems. In: The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care, pp. 105–134. Springer, Switzerland (2021)CrossRef Awotunde, J.B., Jimoh, R.G., Folorunso, S.O., et al.: Privacy and security concerns in IoT-based healthcare systems. In: The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care, pp. 105–134. Springer, Switzerland (2021)CrossRef
44.
Zurück zum Zitat Yan, S., Chughtai, A., Macintyre, C.: Utility and potential of rapid epidemic intelligence from internet-based sources. Int. J. Infect. Dis. 63, 77–87 (2017)CrossRef Yan, S., Chughtai, A., Macintyre, C.: Utility and potential of rapid epidemic intelligence from internet-based sources. Int. J. Infect. Dis. 63, 77–87 (2017)CrossRef
45.
Zurück zum Zitat Hossain, M.S., Muhammad, G., Guizani, N.: Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics. IEEE Netw. 34, 126–132 (2020)CrossRef Hossain, M.S., Muhammad, G., Guizani, N.: Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics. IEEE Netw. 34, 126–132 (2020)CrossRef
46.
Zurück zum Zitat Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A Practical Guide, vol. 10, 1st edn, pp. 10–5555. Springer International Publishing, Cham (2017)CrossRef Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A Practical Guide, vol. 10, 1st edn, pp. 10–5555. Springer International Publishing, Cham (2017)CrossRef
47.
Zurück zum Zitat World Health Organization, others: Rapid Risk Assessment of Acute Public Health Events. World Health Organization, Geneva (2012) World Health Organization, others: Rapid Risk Assessment of Acute Public Health Events. World Health Organization, Geneva (2012)
48.
Zurück zum Zitat Han, X.: Review of risk assessment methods for infectious diseases. In: IOP Conference Series: Earth and Environmental Science, vol. 446, p. 032023. IOP Publishing, Chongqing, China (2020) Han, X.: Review of risk assessment methods for infectious diseases. In: IOP Conference Series: Earth and Environmental Science, vol. 446, p. 032023. IOP Publishing, Chongqing, China (2020)
49.
Zurück zum Zitat Faustman, E.M., Omenn, G.S.: Risk assessment. In: Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8th edn. McGraw-Hill Education, New York (2012) Faustman, E.M., Omenn, G.S.: Risk assessment. In: Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8th edn. McGraw-Hill Education, New York (2012)
50.
Zurück zum Zitat Ross, Y.B., Hoque, M., Blanton, J.D., et al.: Rabies healthcare-seeking behaviors of urban and peri-urban residents: results from a rabies knowledge, attitudes, and practices survey, Bangladesh, 2018. PLoS Negl. Trop. Dis. 16, e0010634 (2022)CrossRef Ross, Y.B., Hoque, M., Blanton, J.D., et al.: Rabies healthcare-seeking behaviors of urban and peri-urban residents: results from a rabies knowledge, attitudes, and practices survey, Bangladesh, 2018. PLoS Negl. Trop. Dis. 16, e0010634 (2022)CrossRef
51.
Zurück zum Zitat Ewing, M., Naredi, P., Zhang, C., Månsson, J.: Identification of patients with non-metastatic colorectal cancer in primary care: a case-control study. Br. J. Gen. Pract. 66, e880–e886 (2016)CrossRef Ewing, M., Naredi, P., Zhang, C., Månsson, J.: Identification of patients with non-metastatic colorectal cancer in primary care: a case-control study. Br. J. Gen. Pract. 66, e880–e886 (2016)CrossRef
52.
Zurück zum Zitat Moynihan, R., Sanders, S., Michaleff, Z.A., et al.: Impact of COVID-19 pandemic on utilisation of healthcare services: a systematic review. BMJ Open. 11, e045343 (2021)CrossRef Moynihan, R., Sanders, S., Michaleff, Z.A., et al.: Impact of COVID-19 pandemic on utilisation of healthcare services: a systematic review. BMJ Open. 11, e045343 (2021)CrossRef
53.
Zurück zum Zitat Xiao, H., Dai, X., Wagenaar, B.H., et al.: The impact of the COVID-19 pandemic on health services utilization in China: time-series analyses for 2016–2020. Lancet Reg. Health West. Pac. 9, 100122 (2021)CrossRef Xiao, H., Dai, X., Wagenaar, B.H., et al.: The impact of the COVID-19 pandemic on health services utilization in China: time-series analyses for 2016–2020. Lancet Reg. Health West. Pac. 9, 100122 (2021)CrossRef
54.
Zurück zum Zitat Recchia, V., Aloisi, A., Zizza, A.: Risk management and communication plans from SARS to COVID-19 and beyond. Int. J. Health Plann. Manag. 37, 3039–3060 (2022)CrossRef Recchia, V., Aloisi, A., Zizza, A.: Risk management and communication plans from SARS to COVID-19 and beyond. Int. J. Health Plann. Manag. 37, 3039–3060 (2022)CrossRef
55.
Zurück zum Zitat Calò, F., Russo, A., Camaioni, C., et al.: Burden, risk assessment, surveillance and management of SARS-CoV-2 infection in health workers: a scoping review. Infect. Dis. Poverty. 9, 1–11 (2020)CrossRef Calò, F., Russo, A., Camaioni, C., et al.: Burden, risk assessment, surveillance and management of SARS-CoV-2 infection in health workers: a scoping review. Infect. Dis. Poverty. 9, 1–11 (2020)CrossRef
56.
Zurück zum Zitat Bertagna, S., Dodero, M., Bortuzzo, V., et al.: An innovative approach for the biological risk management on-board ships during COVID-19 crisis. Marit. Transport Res. 2, 100028 (2021)CrossRef Bertagna, S., Dodero, M., Bortuzzo, V., et al.: An innovative approach for the biological risk management on-board ships during COVID-19 crisis. Marit. Transport Res. 2, 100028 (2021)CrossRef
57.
Zurück zum Zitat Kordsmeyer, A.-C., Mojtahedzadeh, N., Heidrich, J., et al.: Systematic review on outbreaks of SARS-CoV-2 on cruise, navy and cargo ships. Int. J. Environ. Res. Public Health. 18, 5195 (2021)CrossRef Kordsmeyer, A.-C., Mojtahedzadeh, N., Heidrich, J., et al.: Systematic review on outbreaks of SARS-CoV-2 on cruise, navy and cargo ships. Int. J. Environ. Res. Public Health. 18, 5195 (2021)CrossRef
58.
Zurück zum Zitat Huang, L.-S., Li, L., Dunn, L., He, M.: Taking account of asymptomatic infections: a modeling study of the COVID-19 outbreak on the Diamond Princess cruise ship. PLoS One. 16, e0248273 (2021)CrossRef Huang, L.-S., Li, L., Dunn, L., He, M.: Taking account of asymptomatic infections: a modeling study of the COVID-19 outbreak on the Diamond Princess cruise ship. PLoS One. 16, e0248273 (2021)CrossRef
59.
Zurück zum Zitat Willebrand, K.S., Pischel, L., Malik, A.A., et al.: A review of COVID-19 transmission dynamics and clinical outcomes on cruise ships worldwide, January to October 2020. Eur. Secur. 27, 2002113 (2022) Willebrand, K.S., Pischel, L., Malik, A.A., et al.: A review of COVID-19 transmission dynamics and clinical outcomes on cruise ships worldwide, January to October 2020. Eur. Secur. 27, 2002113 (2022)
60.
Zurück zum Zitat Rooney, R.M., Bartram, J.K., Cramer, E.H., et al.: A review of outbreaks of waterborne disease associated with ships: evidence for risk management. Public Health Rep. 119, 435–442 (2004)CrossRef Rooney, R.M., Bartram, J.K., Cramer, E.H., et al.: A review of outbreaks of waterborne disease associated with ships: evidence for risk management. Public Health Rep. 119, 435–442 (2004)CrossRef
61.
Zurück zum Zitat Guagliardo, S.A.J., Prasad, P.V., Rodriguez, A., et al.: Cruise ship travel in the era of coronavirus disease 2019 (COVID-19): a summary of outbreaks and a model of public health interventions. Clin. Infect. Dis. 74, 490–497 (2022)CrossRef Guagliardo, S.A.J., Prasad, P.V., Rodriguez, A., et al.: Cruise ship travel in the era of coronavirus disease 2019 (COVID-19): a summary of outbreaks and a model of public health interventions. Clin. Infect. Dis. 74, 490–497 (2022)CrossRef
62.
Zurück zum Zitat Wang, Z., Yao, M., Meng, C., Claramunt, C.: Risk assessment of the overseas imported COVID-19 of ocean-going ships based on AIS and infection data. ISPRS Int. J. Geo Inf. 9, 351 (2020)CrossRef Wang, Z., Yao, M., Meng, C., Claramunt, C.: Risk assessment of the overseas imported COVID-19 of ocean-going ships based on AIS and infection data. ISPRS Int. J. Geo Inf. 9, 351 (2020)CrossRef
63.
Zurück zum Zitat Ventikos, N.P., Sotiralis, P., Annetis, M., Roland, F.: Developing a framework for health risk assessment, by integrating infection and spreading aspects into RBD. In: Medical Sciences Forum, p. 2. Multidisciplinary Digital Publishing Institute, Athens, Greece (2022) Ventikos, N.P., Sotiralis, P., Annetis, M., Roland, F.: Developing a framework for health risk assessment, by integrating infection and spreading aspects into RBD. In: Medical Sciences Forum, p. 2. Multidisciplinary Digital Publishing Institute, Athens, Greece (2022)
64.
Zurück zum Zitat Braidotti, L., Bertagna, S., Dodero, M., et al.: Identification of measures to contain the outbreaks on passenger ships using pedestrian simulations. Procedia Comput. Sci. 200, 1565–1574 (2022)CrossRef Braidotti, L., Bertagna, S., Dodero, M., et al.: Identification of measures to contain the outbreaks on passenger ships using pedestrian simulations. Procedia Comput. Sci. 200, 1565–1574 (2022)CrossRef
65.
Zurück zum Zitat Pirneskoski, J., Kuisma, M., Olkkola, K.T., Nurmi, J.: Prehospital national early warning score predicts early mortality. Acta Anaesthesiol. Scand. 63, 676–683 (2019)CrossRef Pirneskoski, J., Kuisma, M., Olkkola, K.T., Nurmi, J.: Prehospital national early warning score predicts early mortality. Acta Anaesthesiol. Scand. 63, 676–683 (2019)CrossRef
66.
Zurück zum Zitat Duan, J., Jiao, F.: Novel case-based reasoning system for public health emergencies. Risk Manag. Healthc. Policy. 14, 541–553 (2021)CrossRef Duan, J., Jiao, F.: Novel case-based reasoning system for public health emergencies. Risk Manag. Healthc. Policy. 14, 541–553 (2021)CrossRef
67.
Zurück zum Zitat Ling, M., Wenxiao, T., Yenan, F., et al.: Risk assessment of public health emergencies concerned in the mainland of China, March 2021. Dis. Surveill. 36, 201–203 (2021) Ling, M., Wenxiao, T., Yenan, F., et al.: Risk assessment of public health emergencies concerned in the mainland of China, March 2021. Dis. Surveill. 36, 201–203 (2021)
68.
Zurück zum Zitat Wen-yan, X.: Establishment and application on risk assessment index system of imported respiratory infectious diseases at frontier ports (2012) Wen-yan, X.: Establishment and application on risk assessment index system of imported respiratory infectious diseases at frontier ports (2012)
69.
Zurück zum Zitat World Health Organization, others: Tool for Influenza Pandemic Risk Assessment (TIPRA). World Health Organization, Geneva (2016) World Health Organization, others: Tool for Influenza Pandemic Risk Assessment (TIPRA). World Health Organization, Geneva (2016)
70.
Zurück zum Zitat Soltanzadeh, A., Adeli, S.H., Yarandi, M.S., Mahdinia, M.: Developing a risk assessment method for infectious diseases focusing on COVID-19 based on the Delphi method and fuzzy analytical hierarchy process. Work, 1–10 (2022) Soltanzadeh, A., Adeli, S.H., Yarandi, M.S., Mahdinia, M.: Developing a risk assessment method for infectious diseases focusing on COVID-19 based on the Delphi method and fuzzy analytical hierarchy process. Work, 1–10 (2022)
71.
Zurück zum Zitat Duan, J., Lin, Z., Jiao, F., et al.: A dynamic case-based reasoning system for responding to infectious disease outbreaks. Expert Syst. Appl. 204, 117628 (2022)CrossRef Duan, J., Lin, Z., Jiao, F., et al.: A dynamic case-based reasoning system for responding to infectious disease outbreaks. Expert Syst. Appl. 204, 117628 (2022)CrossRef
73.
Zurück zum Zitat Zhou, S., Zhou, S., Zheng, Z., et al.: Risk assessment for precise intervention of COVID-19 epidemic based on available big data and spatio-temporal simulation method: empirical evidence from different public places in Guangzhou, China. Appl. Geogr. 143, 102702 (2022)CrossRef Zhou, S., Zhou, S., Zheng, Z., et al.: Risk assessment for precise intervention of COVID-19 epidemic based on available big data and spatio-temporal simulation method: empirical evidence from different public places in Guangzhou, China. Appl. Geogr. 143, 102702 (2022)CrossRef
74.
Zurück zum Zitat Moss, R., Hickson, R.I., McVernon, J., et al.: Model-informed risk assessment and decision making for an emerging infectious disease in the Asia-Pacific region. PLoS Negl. Trop. Dis. 10, e0005018 (2016)CrossRef Moss, R., Hickson, R.I., McVernon, J., et al.: Model-informed risk assessment and decision making for an emerging infectious disease in the Asia-Pacific region. PLoS Negl. Trop. Dis. 10, e0005018 (2016)CrossRef
75.
Zurück zum Zitat Lesmanawati, D.A., Veenstra, P., Moa, A., et al.: A rapid risk analysis tool to prioritise response to infectious disease outbreaks. BMJ Glob. Health. 5, e002327 (2020)CrossRef Lesmanawati, D.A., Veenstra, P., Moa, A., et al.: A rapid risk analysis tool to prioritise response to infectious disease outbreaks. BMJ Glob. Health. 5, e002327 (2020)CrossRef
76.
Zurück zum Zitat Zhou, L., Liu, J.-M., Dong, X.-P., et al.: COVID-19 seeding time and doubling time model: an early epidemic risk assessment tool. Infect. Dis. Poverty. 9, 1–9 (2020)CrossRef Zhou, L., Liu, J.-M., Dong, X.-P., et al.: COVID-19 seeding time and doubling time model: an early epidemic risk assessment tool. Infect. Dis. Poverty. 9, 1–9 (2020)CrossRef
77.
Zurück zum Zitat Chatterjee, R., Bajwa, S., Dwivedi, D., et al.: COVID-19 risk assessment tool: dual application of risk communication and risk governance. Prog. Disaster Sci. 7, 100109 (2020)CrossRef Chatterjee, R., Bajwa, S., Dwivedi, D., et al.: COVID-19 risk assessment tool: dual application of risk communication and risk governance. Prog. Disaster Sci. 7, 100109 (2020)CrossRef
78.
Zurück zum Zitat Jia, J.S., Lu, X., Yuan, Y., et al.: Population flow drives spatio-temporal distribution of COVID-19 in China. Nature. 582, 389–394 (2020)CrossRef Jia, J.S., Lu, X., Yuan, Y., et al.: Population flow drives spatio-temporal distribution of COVID-19 in China. Nature. 582, 389–394 (2020)CrossRef
79.
Zurück zum Zitat Pluchino, A., Biondo, A., Giuffrida, N., et al.: A novel methodology for epidemic risk assessment of COVID-19 outbreak. Sci. Rep. 11, 1–20 (2021) Pluchino, A., Biondo, A., Giuffrida, N., et al.: A novel methodology for epidemic risk assessment of COVID-19 outbreak. Sci. Rep. 11, 1–20 (2021)
80.
Zurück zum Zitat Helou, M.A., DiazGranados, D., Ryan, M.S., Cyrus, J.W.: Uncertainty in decision-making in medicine: a scoping review and thematic analysis of conceptual models. Acad. Med. 95, 157 (2020)CrossRef Helou, M.A., DiazGranados, D., Ryan, M.S., Cyrus, J.W.: Uncertainty in decision-making in medicine: a scoping review and thematic analysis of conceptual models. Acad. Med. 95, 157 (2020)CrossRef
81.
Zurück zum Zitat Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1, 20–23 (2019)CrossRef Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1, 20–23 (2019)CrossRef
82.
Zurück zum Zitat Rasmussen, S.L., Sahay, S.: Engaging with uncertainty: information practices in the context of disease surveillance in Burkina Faso. Inf. Organ. 31, 100366 (2021)CrossRef Rasmussen, S.L., Sahay, S.: Engaging with uncertainty: information practices in the context of disease surveillance in Burkina Faso. Inf. Organ. 31, 100366 (2021)CrossRef
83.
Zurück zum Zitat Arji, G., Ahmadi, H., Nilashi, M., et al.: Fuzzy logic approach for infectious disease diagnosis: a methodical evaluation, literature and classification. Biocybern. Biomed. Eng. 39, 937–955 (2019)CrossRef Arji, G., Ahmadi, H., Nilashi, M., et al.: Fuzzy logic approach for infectious disease diagnosis: a methodical evaluation, literature and classification. Biocybern. Biomed. Eng. 39, 937–955 (2019)CrossRef
84.
Zurück zum Zitat Jiang, Q., Zhou, X., Wang, R., et al.: Intelligent monitoring for infectious diseases with fuzzy systems and edge computing: a survey. Appl. Soft Comput. 108835, 108835 (2022)CrossRef Jiang, Q., Zhou, X., Wang, R., et al.: Intelligent monitoring for infectious diseases with fuzzy systems and edge computing: a survey. Appl. Soft Comput. 108835, 108835 (2022)CrossRef
85.
Zurück zum Zitat Seker, S., Baglan, F.B., Aydin, N., et al.: Risk assessment approach for analyzing risk factors to overcome pandemic using interval-valued q-rung orthopair fuzzy decision making method. Appl. Soft Comput. 132, 109891 (2023)CrossRef Seker, S., Baglan, F.B., Aydin, N., et al.: Risk assessment approach for analyzing risk factors to overcome pandemic using interval-valued q-rung orthopair fuzzy decision making method. Appl. Soft Comput. 132, 109891 (2023)CrossRef
86.
Zurück zum Zitat Painuli, D., Mishra, D., Bhardwaj, S., Aggarwal, M.: Fuzzy rule based system to predict COVID19-a deadly virus. Way. 3, 5 (2020) Painuli, D., Mishra, D., Bhardwaj, S., Aggarwal, M.: Fuzzy rule based system to predict COVID19-a deadly virus. Way. 3, 5 (2020)
87.
Zurück zum Zitat Groumpos, P.P., Apostolopoulos, I.D.: Modeling the spread of dangerous pandemics with the utilization of a hybrid-statistical–Advanced-Fuzzy-Cognitive-Map algorithm: the example of COVID-19. Res. Biomed. Eng. 37, 749–764 (2021)CrossRef Groumpos, P.P., Apostolopoulos, I.D.: Modeling the spread of dangerous pandemics with the utilization of a hybrid-statistical–Advanced-Fuzzy-Cognitive-Map algorithm: the example of COVID-19. Res. Biomed. Eng. 37, 749–764 (2021)CrossRef
88.
Zurück zum Zitat Crabtree, K., Gerba, C., Rose, J., Haas, C.: Waterborne adenovirus: a risk assessment. Water Sci. Technol. 35, 1–6 (1997)CrossRef Crabtree, K., Gerba, C., Rose, J., Haas, C.: Waterborne adenovirus: a risk assessment. Water Sci. Technol. 35, 1–6 (1997)CrossRef
89.
Zurück zum Zitat Pintar, K., Fazil, A., Pollari, F., et al.: A risk assessment model to evaluate the role of fecal contamination in recreational water on the incidence of cryptosporidiosis at the community level in Ontario. Risk Anal. 30, 49–64 (2010)CrossRef Pintar, K., Fazil, A., Pollari, F., et al.: A risk assessment model to evaluate the role of fecal contamination in recreational water on the incidence of cryptosporidiosis at the community level in Ontario. Risk Anal. 30, 49–64 (2010)CrossRef
90.
Zurück zum Zitat Jacob, P., Henry, A., Meheut, G., et al.: Health risk assessment related to waterborne pathogens from the river to the tap. Int. J. Environ. Res. Public Health. 12, 2967–2983 (2015)CrossRef Jacob, P., Henry, A., Meheut, G., et al.: Health risk assessment related to waterborne pathogens from the river to the tap. Int. J. Environ. Res. Public Health. 12, 2967–2983 (2015)CrossRef
91.
Zurück zum Zitat Sims, N., Kasprzyk-Hordern, B.: Future perspectives of wastewater-based epidemiology: monitoring infectious disease spread and resistance to the community level. Environ. Int. 139, 105689 (2020)CrossRef Sims, N., Kasprzyk-Hordern, B.: Future perspectives of wastewater-based epidemiology: monitoring infectious disease spread and resistance to the community level. Environ. Int. 139, 105689 (2020)CrossRef
92.
Zurück zum Zitat Sze To, G.N., Chao, C.Y.H.: Review and comparison between the Wells–Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air. 20, 2–16 (2010)CrossRef Sze To, G.N., Chao, C.Y.H.: Review and comparison between the Wells–Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air. 20, 2–16 (2010)CrossRef
93.
Zurück zum Zitat Azimi, P., Keshavarz, Z., Cedeno Laurent, J.G., et al.: Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc. Natl. Acad. Sci. 118, e2015482118 (2021)CrossRef Azimi, P., Keshavarz, Z., Cedeno Laurent, J.G., et al.: Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc. Natl. Acad. Sci. 118, e2015482118 (2021)CrossRef
94.
Zurück zum Zitat Wan, P.K., Huang, L., Lai, Z., et al.: Automated infection risks assessments (AIRa) for decision-making using a blockchain-based alert system: a case study in a representative building. Environ. Res. 216, 114663 (2023)CrossRef Wan, P.K., Huang, L., Lai, Z., et al.: Automated infection risks assessments (AIRa) for decision-making using a blockchain-based alert system: a case study in a representative building. Environ. Res. 216, 114663 (2023)CrossRef
95.
Zurück zum Zitat Di Gilio, A., Palmisani, J., Pulimeno, M., et al.: CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environ. Res. 202, 111560 (2021)CrossRef Di Gilio, A., Palmisani, J., Pulimeno, M., et al.: CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environ. Res. 202, 111560 (2021)CrossRef
96.
Zurück zum Zitat Russell, T.W., Hellewell, J., Jarvis, C.I., et al.: Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurveillance. 25, 2000256 (2020)CrossRef Russell, T.W., Hellewell, J., Jarvis, C.I., et al.: Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurveillance. 25, 2000256 (2020)CrossRef
97.
Zurück zum Zitat Mizumoto, K., Kagaya, K., Zarebski, A., Chowell, G.: Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. 25, 2000180 (2020)CrossRef Mizumoto, K., Kagaya, K., Zarebski, A., Chowell, G.: Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. 25, 2000180 (2020)CrossRef
98.
Zurück zum Zitat Zhang, S., Diao, M., Yu, W., et al.: Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: a data-driven analysis. Int. J. Infect. Dis. 93, 201–204 (2020)CrossRef Zhang, S., Diao, M., Yu, W., et al.: Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: a data-driven analysis. Int. J. Infect. Dis. 93, 201–204 (2020)CrossRef
99.
Zurück zum Zitat Mizumoto, K., Chowell, G.: Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infect. Dis. Model. 5, 264–270 (2020) Mizumoto, K., Chowell, G.: Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infect. Dis. Model. 5, 264–270 (2020)
100.
Zurück zum Zitat Roth, J.A., Battegay, M., Juchler, F., et al.: Introduction to machine learning in digital healthcare epidemiology. Infect. Control Hosp. Epidemiol. 39, 1457–1462 (2018)CrossRef Roth, J.A., Battegay, M., Juchler, F., et al.: Introduction to machine learning in digital healthcare epidemiology. Infect. Control Hosp. Epidemiol. 39, 1457–1462 (2018)CrossRef
101.
Zurück zum Zitat He, X., Zhou, C., Wang, Y., Yuan, X.: Risk assessment and prediction of COVID-19 based on epidemiological data from spatiotemporal geography. Front. Environ. Sci. 9, 634156 (2021)CrossRef He, X., Zhou, C., Wang, Y., Yuan, X.: Risk assessment and prediction of COVID-19 based on epidemiological data from spatiotemporal geography. Front. Environ. Sci. 9, 634156 (2021)CrossRef
102.
Zurück zum Zitat Nikparvar, B., Rahman, M.M., Hatami, F., Thill, J.-C.: Spatio-temporal prediction of the COVID-19 pandemic in US counties: modeling with a deep LSTM neural network. Sci. Rep. 11, 21715 (2021)CrossRef Nikparvar, B., Rahman, M.M., Hatami, F., Thill, J.-C.: Spatio-temporal prediction of the COVID-19 pandemic in US counties: modeling with a deep LSTM neural network. Sci. Rep. 11, 21715 (2021)CrossRef
103.
Zurück zum Zitat Wang, P., Liu, H., Zheng, X., Ma, R.: A new method for spatio-temporal transmission prediction of COVID-19. Chaos, Solitons Fractals. 167, 112996 (2023)MathSciNetCrossRef Wang, P., Liu, H., Zheng, X., Ma, R.: A new method for spatio-temporal transmission prediction of COVID-19. Chaos, Solitons Fractals. 167, 112996 (2023)MathSciNetCrossRef
104.
Zurück zum Zitat Paul, S.K., Jana, S., Bhaumik, P.: A multivariate spatiotemporal model of COVID-19 epidemic using ensemble of ConvLSTM networks. J. Inst. Eng. India Ser. B. 102, 1137–1142 (2021)CrossRef Paul, S.K., Jana, S., Bhaumik, P.: A multivariate spatiotemporal model of COVID-19 epidemic using ensemble of ConvLSTM networks. J. Inst. Eng. India Ser. B. 102, 1137–1142 (2021)CrossRef
105.
Zurück zum Zitat Niraula, P., Mateu, J., Chaudhuri, S.: A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases. Stoch. Env. Res. Risk A. 36, 2265–2283 (2022)CrossRef Niraula, P., Mateu, J., Chaudhuri, S.: A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases. Stoch. Env. Res. Risk A. 36, 2265–2283 (2022)CrossRef
106.
Zurück zum Zitat Padmanabhan, R., Meskin, N., Khattab, T., et al.: Reinforcement learning-based decision support system for COVID-19. Biomed. Signal Process. Control. 68, 102676 (2021)CrossRef Padmanabhan, R., Meskin, N., Khattab, T., et al.: Reinforcement learning-based decision support system for COVID-19. Biomed. Signal Process. Control. 68, 102676 (2021)CrossRef
107.
Zurück zum Zitat Guo, X., Chen, P., Liang, S., et al.: PaCAR: COVID-19 pandemic control decision making via large-scale agent-based modeling and deep reinforcement learning. Med. Decis. Mak. 42, 1064–1077 (2022)CrossRef Guo, X., Chen, P., Liang, S., et al.: PaCAR: COVID-19 pandemic control decision making via large-scale agent-based modeling and deep reinforcement learning. Med. Decis. Mak. 42, 1064–1077 (2022)CrossRef
108.
Zurück zum Zitat Spangler, D., Hermansson, T., Smekal, D., Blomberg, H.: A validation of machine learning-based risk scores in the prehospital setting. PLoS One. 14, e0226518 (2019)CrossRef Spangler, D., Hermansson, T., Smekal, D., Blomberg, H.: A validation of machine learning-based risk scores in the prehospital setting. PLoS One. 14, e0226518 (2019)CrossRef
109.
Zurück zum Zitat Wang, L., Guo, J., Tian, Z., et al.: Developing a hybrid risk assessment tool for familial hypercholesterolemia: a machine learning study of Chinese arteriosclerotic cardiovascular disease patients. Front. Cardiovasc. Med. 9 (2022) Wang, L., Guo, J., Tian, Z., et al.: Developing a hybrid risk assessment tool for familial hypercholesterolemia: a machine learning study of Chinese arteriosclerotic cardiovascular disease patients. Front. Cardiovasc. Med. 9 (2022)
110.
Zurück zum Zitat Chung, K., Jung, H.: Knowledge-based dynamic cluster model for healthcare management using a convolutional neural network. Inf. Technol. Manag. 21, 41–50 (2020)CrossRef Chung, K., Jung, H.: Knowledge-based dynamic cluster model for healthcare management using a convolutional neural network. Inf. Technol. Manag. 21, 41–50 (2020)CrossRef
111.
Zurück zum Zitat Soui, M., Gasmi, I., Smiti, S., Ghédira, K.: Rule-based credit risk assessment model using multi-objective evolutionary algorithms. Expert Syst. Appl. 126, 144–157 (2019)CrossRef Soui, M., Gasmi, I., Smiti, S., Ghédira, K.: Rule-based credit risk assessment model using multi-objective evolutionary algorithms. Expert Syst. Appl. 126, 144–157 (2019)CrossRef
112.
Zurück zum Zitat Liu, M., Liu, M., Li, Z., et al.: The spatial clustering analysis of COVID-19 and its associated factors in mainland China at the prefecture level. Sci. Total Environ. 777, 145992 (2021)CrossRef Liu, M., Liu, M., Li, Z., et al.: The spatial clustering analysis of COVID-19 and its associated factors in mainland China at the prefecture level. Sci. Total Environ. 777, 145992 (2021)CrossRef
113.
Zurück zum Zitat Younsi, F.-Z., Bounnekar, A., Hamdadou, D., Boussaid, O.: Integration of multiple regression model in an epidemiological decision support system. Int. J. Inf. Technol. Decis. Making. 18, 1755–1783 (2019)CrossRef Younsi, F.-Z., Bounnekar, A., Hamdadou, D., Boussaid, O.: Integration of multiple regression model in an epidemiological decision support system. Int. J. Inf. Technol. Decis. Making. 18, 1755–1783 (2019)CrossRef
114.
Zurück zum Zitat Ghosh, D., Guha, R.: Using a neural network for mining interpretable relationships of West Nile risk factors. Soc. Sci. Med. 72, 418–429 (2011)CrossRef Ghosh, D., Guha, R.: Using a neural network for mining interpretable relationships of West Nile risk factors. Soc. Sci. Med. 72, 418–429 (2011)CrossRef
115.
Zurück zum Zitat Tian, T., Jiang, Y., Zhang, Y., et al.: COVID-Net: a deep learning based and interpretable predication model for the county-wise trajectories of COVID-19 in the United States. MedRxiv, 2020–2025 (2020) Tian, T., Jiang, Y., Zhang, Y., et al.: COVID-Net: a deep learning based and interpretable predication model for the county-wise trajectories of COVID-19 in the United States. MedRxiv, 2020–2025 (2020)
116.
Zurück zum Zitat Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos, Solitons Fractals. 135, 109850 (2020)CrossRef Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos, Solitons Fractals. 135, 109850 (2020)CrossRef
117.
Zurück zum Zitat Sykes, A.L., Silva, G.S., Holtkamp, D.J., et al.: Interpretable machine learning applied to on-farm biosecurity and porcine reproductive and respiratory syndrome virus. Transbound. Emerg. Dis. 69, e916–e930 (2022)CrossRef Sykes, A.L., Silva, G.S., Holtkamp, D.J., et al.: Interpretable machine learning applied to on-farm biosecurity and porcine reproductive and respiratory syndrome virus. Transbound. Emerg. Dis. 69, e916–e930 (2022)CrossRef
118.
Zurück zum Zitat Bazilevych, K., Chumachenko, D., Hulianytskyi, L., et al.: Intelligent decision-support system for epidemiological diagnostics. I. A concept of architecture design. Cybern. Syst. Anal. 58, 343–353 (2022)CrossRef Bazilevych, K., Chumachenko, D., Hulianytskyi, L., et al.: Intelligent decision-support system for epidemiological diagnostics. I. A concept of architecture design. Cybern. Syst. Anal. 58, 343–353 (2022)CrossRef
119.
Zurück zum Zitat Deng, Q., Xiao, X., Zhu, L., et al.: A national risk analysis model (NRAM) for the assessment of COVID-19 epidemic. Risk Anal. 43, 1946 (2023)CrossRef Deng, Q., Xiao, X., Zhu, L., et al.: A national risk analysis model (NRAM) for the assessment of COVID-19 epidemic. Risk Anal. 43, 1946 (2023)CrossRef
120.
Zurück zum Zitat Kumar, R., Al-Turjman, F., Srinivas, L., et al.: ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India. Neural Comput. & Applic., 1–14 (2021) Kumar, R., Al-Turjman, F., Srinivas, L., et al.: ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India. Neural Comput. & Applic., 1–14 (2021)
121.
Zurück zum Zitat Alsayed, A., Sadir, H., Kamil, R., Sari, H.: Prediction of epidemic peak and infected cases for COVID-19 disease in Malaysia, 2020. Int. J. Environ. Res. Public Health. 17, 4076 (2020)CrossRef Alsayed, A., Sadir, H., Kamil, R., Sari, H.: Prediction of epidemic peak and infected cases for COVID-19 disease in Malaysia, 2020. Int. J. Environ. Res. Public Health. 17, 4076 (2020)CrossRef
122.
Zurück zum Zitat Cihan, P.: Fuzzy rule-based system for predicting daily case in covid-19 outbreak. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, pp 1–4 (2020) Cihan, P.: Fuzzy rule-based system for predicting daily case in covid-19 outbreak. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, pp 1–4 (2020)
123.
Zurück zum Zitat Papageorgiou, E.I., Papandrianos, N.I., Karagianni, G., et al.: A fuzzy cognitive map based tool for prediction of infectious diseases. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE, pp 2094–2099 (2009) Papageorgiou, E.I., Papandrianos, N.I., Karagianni, G., et al.: A fuzzy cognitive map based tool for prediction of infectious diseases. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE, pp 2094–2099 (2009)
124.
Zurück zum Zitat Li, H., Meng, S., Tong, H.: How to control cruise ship disease risk? Inspiration from the research literature. Mar. Policy. 132, 104652 (2021)CrossRef Li, H., Meng, S., Tong, H.: How to control cruise ship disease risk? Inspiration from the research literature. Mar. Policy. 132, 104652 (2021)CrossRef
125.
Zurück zum Zitat Joob, B., Wiwanitkit, V.: Concern on infectious disease prevention: an issue for maritime management. Maritime Technol. Res. 5, 262682 (2023)CrossRef Joob, B., Wiwanitkit, V.: Concern on infectious disease prevention: an issue for maritime management. Maritime Technol. Res. 5, 262682 (2023)CrossRef
126.
Zurück zum Zitat Lipinski, T., Ahmad, D., Serey, N., Jouhara, H.: Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings. Int. J. Thermofluids. 7, 100045 (2020)CrossRef Lipinski, T., Ahmad, D., Serey, N., Jouhara, H.: Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings. Int. J. Thermofluids. 7, 100045 (2020)CrossRef
127.
Zurück zum Zitat Almilaji, O.: Air recirculation role in the spread of COVID-19 onboard the diamond princess cruise ship during a quarantine period. Aerosol Air Qual. Res. 21, 200495 (2021)CrossRef Almilaji, O.: Air recirculation role in the spread of COVID-19 onboard the diamond princess cruise ship during a quarantine period. Aerosol Air Qual. Res. 21, 200495 (2021)CrossRef
128.
Zurück zum Zitat Gupta, A., Kunte, R., Goyal, N., et al.: A comparative analysis of control measures on-board ship against COVID-19 and similar novel viral respiratory disease outbreak: quarantine ship or disembark suspects? Med. J. Armed Forces India. 77, S430–S436 (2021)CrossRef Gupta, A., Kunte, R., Goyal, N., et al.: A comparative analysis of control measures on-board ship against COVID-19 and similar novel viral respiratory disease outbreak: quarantine ship or disembark suspects? Med. J. Armed Forces India. 77, S430–S436 (2021)CrossRef
129.
Zurück zum Zitat Hadjichristodoulou, C., Mouchtouri, V.A., Guglielmetti, P., et al.: Actions for prevention and control of health threats related to maritime transport in European Union. Travel Med. Infect. Dis. 11, 238–242 (2013)CrossRef Hadjichristodoulou, C., Mouchtouri, V.A., Guglielmetti, P., et al.: Actions for prevention and control of health threats related to maritime transport in European Union. Travel Med. Infect. Dis. 11, 238–242 (2013)CrossRef
130.
Zurück zum Zitat Laganà, P., Gambuzza, M.E., Delia, S.: Legionella risk assessment in cruise ships and ferries. Ann. Agric. Environ. Med. 24, 276 (2017)CrossRef Laganà, P., Gambuzza, M.E., Delia, S.: Legionella risk assessment in cruise ships and ferries. Ann. Agric. Environ. Med. 24, 276 (2017)CrossRef
131.
Zurück zum Zitat Gollasch, S., Minchin, D., David, M.: The transfer of harmful aquatic organisms and pathogens with ballast water and their impacts. In: Global Maritime Transport and Ballast Water Management: Issues and Solutions, pp. 35–58. Springer, Dordrecht (2015)CrossRef Gollasch, S., Minchin, D., David, M.: The transfer of harmful aquatic organisms and pathogens with ballast water and their impacts. In: Global Maritime Transport and Ballast Water Management: Issues and Solutions, pp. 35–58. Springer, Dordrecht (2015)CrossRef
132.
Zurück zum Zitat Xu, L., Peng, J., Wang, M., Yang, J.: Lessons and suggestions to travelers and cruise ships in the fight against COVID-19. QJM. 114, 153–154 (2021)CrossRef Xu, L., Peng, J., Wang, M., Yang, J.: Lessons and suggestions to travelers and cruise ships in the fight against COVID-19. QJM. 114, 153–154 (2021)CrossRef
133.
Zurück zum Zitat Codreanu, T.A., Ngeh, S., Trewin, A., Armstrong, P.K.: Successful control of an onboard COVID-19 outbreak using the cruise ship as a quarantine facility, Western Australia, Australia. Emerg. Infect. Dis. 27, 1279 (2021)CrossRef Codreanu, T.A., Ngeh, S., Trewin, A., Armstrong, P.K.: Successful control of an onboard COVID-19 outbreak using the cruise ship as a quarantine facility, Western Australia, Australia. Emerg. Infect. Dis. 27, 1279 (2021)CrossRef
134.
Zurück zum Zitat Hatzianastasiou, S., Mouchtouri, V.A., Pavli, A., et al.: COVID-19 outbreak on a passenger ship and assessment of response measures, Greece, 2020. Emerg. Infect. Dis. 27, 1927 (2021)CrossRef Hatzianastasiou, S., Mouchtouri, V.A., Pavli, A., et al.: COVID-19 outbreak on a passenger ship and assessment of response measures, Greece, 2020. Emerg. Infect. Dis. 27, 1927 (2021)CrossRef
135.
Zurück zum Zitat Walker, L.J., Codreanu, T.A., Armstrong, P.K., et al.: SARS-CoV-2 infections among Australian passengers on the Diamond Princess cruise ship: a retrospective cohort study. PLoS One. 16, e0255401 (2021)CrossRef Walker, L.J., Codreanu, T.A., Armstrong, P.K., et al.: SARS-CoV-2 infections among Australian passengers on the Diamond Princess cruise ship: a retrospective cohort study. PLoS One. 16, e0255401 (2021)CrossRef
140.
Zurück zum Zitat Canales, R.A., Reynolds, K.A., Wilson, A.M., et al.: Modeling the role of fomites in a norovirus outbreak. J. Occup. Environ. Hyg. 16, 16–26 (2019)CrossRef Canales, R.A., Reynolds, K.A., Wilson, A.M., et al.: Modeling the role of fomites in a norovirus outbreak. J. Occup. Environ. Hyg. 16, 16–26 (2019)CrossRef
141.
Zurück zum Zitat Wilson, A.M., King, M.-F., López-Garc𝚤a, M., et al.: Evaluating a transfer gradient assumption in a fomite-mediated microbial transmission model using an experimental and Bayesian approach. J. R. Soc. Interface. 17, 20200121 (2020)CrossRef Wilson, A.M., King, M.-F., López-Garc𝚤a, M., et al.: Evaluating a transfer gradient assumption in a fomite-mediated microbial transmission model using an experimental and Bayesian approach. J. R. Soc. Interface. 17, 20200121 (2020)CrossRef
142.
Zurück zum Zitat Zhang, W., Liu, S., Osgood, N., et al.: Using simulation modelling and systems science to help contain COVID-19: a systematic review. Syst. Res. Behav. Sci. 40, 207–234 (2023)CrossRef Zhang, W., Liu, S., Osgood, N., et al.: Using simulation modelling and systems science to help contain COVID-19: a systematic review. Syst. Res. Behav. Sci. 40, 207–234 (2023)CrossRef
143.
Zurück zum Zitat Ghoroghi, A., Rezgui, Y., Wallace, R.: Impact of ventilation and avoidance measures on SARS-CoV-2 risk of infection in public indoor environments. Sci. Total Environ. 838, 156518 (2022)CrossRef Ghoroghi, A., Rezgui, Y., Wallace, R.: Impact of ventilation and avoidance measures on SARS-CoV-2 risk of infection in public indoor environments. Sci. Total Environ. 838, 156518 (2022)CrossRef
144.
Zurück zum Zitat Harweg, T., Wagner, M., Weichert, F.: Agent-based simulation for infectious disease modelling over a period of multiple days, with application to an airport scenario. Int. J. Environ. Res. Public Health. 20, 545 (2023)CrossRef Harweg, T., Wagner, M., Weichert, F.: Agent-based simulation for infectious disease modelling over a period of multiple days, with application to an airport scenario. Int. J. Environ. Res. Public Health. 20, 545 (2023)CrossRef
145.
Zurück zum Zitat Yin, S., Sze-To, G., Chao, C.Y.: Retrospective analysis of multi-drug resistant tuberculosis outbreak during a flight using computational fluid dynamics and infection risk assessment. Build. Environ. 47, 50–57 (2012)CrossRef Yin, S., Sze-To, G., Chao, C.Y.: Retrospective analysis of multi-drug resistant tuberculosis outbreak during a flight using computational fluid dynamics and infection risk assessment. Build. Environ. 47, 50–57 (2012)CrossRef
146.
Zurück zum Zitat La, A., Zhang, Q., Cicek, N., et al.: Dose–response modelling of infectious animal diseases coupled with computational fluid dynamics: a simulation of airborne porcine reproductive and respiratory syndrome virus. Biosyst. Eng. 208, 58–78 (2021)CrossRef La, A., Zhang, Q., Cicek, N., et al.: Dose–response modelling of infectious animal diseases coupled with computational fluid dynamics: a simulation of airborne porcine reproductive and respiratory syndrome virus. Biosyst. Eng. 208, 58–78 (2021)CrossRef
147.
Zurück zum Zitat Gupta, J.K., Lin, C.-H., Chen, Q.: Risk assessment of airborne infectious diseases in aircraft cabins. Indoor Air. 22, 388–395 (2012)CrossRef Gupta, J.K., Lin, C.-H., Chen, Q.: Risk assessment of airborne infectious diseases in aircraft cabins. Indoor Air. 22, 388–395 (2012)CrossRef
148.
Zurück zum Zitat Qian, H., Li, Y., Nielsen, P.V., Huang, X.: Spatial distribution of infection risk of SARS transmission in a hospital ward. Build. Environ. 44, 1651–1658 (2009)CrossRef Qian, H., Li, Y., Nielsen, P.V., Huang, X.: Spatial distribution of infection risk of SARS transmission in a hospital ward. Build. Environ. 44, 1651–1658 (2009)CrossRef
151.
Zurück zum Zitat Zhao, X., Liu, S., Yin, Y., et al.: Airborne transmission of COVID-19 virus in enclosed spaces: an overview of research methods. Indoor Air. 32, e13056 (2022)CrossRef Zhao, X., Liu, S., Yin, Y., et al.: Airborne transmission of COVID-19 virus in enclosed spaces: an overview of research methods. Indoor Air. 32, e13056 (2022)CrossRef
152.
Zurück zum Zitat Burridge, H.C., Bhagat, R.K., Stettler, M.E., et al.: The ventilation of buildings and other mitigating measures for COVID-19: a focus on wintertime. Proc. R. Soc. A. 477, 20200855 (2021)CrossRef Burridge, H.C., Bhagat, R.K., Stettler, M.E., et al.: The ventilation of buildings and other mitigating measures for COVID-19: a focus on wintertime. Proc. R. Soc. A. 477, 20200855 (2021)CrossRef
153.
Zurück zum Zitat Miller, S.L., Nazaroff, W.W., Jimenez, J.L., et al.: Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31, 314–323 (2021)CrossRef Miller, S.L., Nazaroff, W.W., Jimenez, J.L., et al.: Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31, 314–323 (2021)CrossRef
154.
Zurück zum Zitat Rowe, B.R., Canosa, A., Drouffe, J.-M., Mitchell, J.B.A.: Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environ. Res. 198, 111189 (2021)CrossRef Rowe, B.R., Canosa, A., Drouffe, J.-M., Mitchell, J.B.A.: Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environ. Res. 198, 111189 (2021)CrossRef
155.
Zurück zum Zitat Wiryasaputra, R., Huang, C.-Y., Kristiani, E., et al.: Review of an intelligent indoor environment monitoring and management system for COVID-19 risk mitigation. Front. Public Health. 10 (2022) Wiryasaputra, R., Huang, C.-Y., Kristiani, E., et al.: Review of an intelligent indoor environment monitoring and management system for COVID-19 risk mitigation. Front. Public Health. 10 (2022)
156.
Zurück zum Zitat Baboli, Z., Neisi, N., Babaei, A.A., et al.: On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. Atmos. Environ. 261, 118563 (2021)CrossRef Baboli, Z., Neisi, N., Babaei, A.A., et al.: On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. Atmos. Environ. 261, 118563 (2021)CrossRef
157.
Zurück zum Zitat Kurabuchi, T., Yanagi, U., Ogata, M., et al.: Operation of air-conditioning and sanitary equipment for SARS-CoV-2 infectious disease control. Jpn Architect. Rev. 4, 608–620 (2021)CrossRef Kurabuchi, T., Yanagi, U., Ogata, M., et al.: Operation of air-conditioning and sanitary equipment for SARS-CoV-2 infectious disease control. Jpn Architect. Rev. 4, 608–620 (2021)CrossRef
158.
Zurück zum Zitat Megahed, N.A., Ghoneim, E.M.: Indoor air quality: rethinking rules of building design strategies in post-pandemic architecture. Environ. Res. 193, 110471 (2021)CrossRef Megahed, N.A., Ghoneim, E.M.: Indoor air quality: rethinking rules of building design strategies in post-pandemic architecture. Environ. Res. 193, 110471 (2021)CrossRef
159.
Zurück zum Zitat Qian, H., Zheng, X.: Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J. Thorac. Dis. 10, S2295 (2018)CrossRef Qian, H., Zheng, X.: Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J. Thorac. Dis. 10, S2295 (2018)CrossRef
160.
Zurück zum Zitat Hussain, S.M., Goel, S., Kadapa, C., Aristodemou, E.: A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Materials Today: Proceedings (2022) Hussain, S.M., Goel, S., Kadapa, C., Aristodemou, E.: A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Materials Today: Proceedings (2022)
161.
Zurück zum Zitat Liu, H., He, S., Shen, L., Hong, J.: Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant. Phys. Fluids. 33, 023301 (2021)CrossRef Liu, H., He, S., Shen, L., Hong, J.: Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant. Phys. Fluids. 33, 023301 (2021)CrossRef
163.
Zurück zum Zitat Ho, C.K.: Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Appl. Math. Model. 95, 297–319 (2021)MathSciNetCrossRef Ho, C.K.: Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Appl. Math. Model. 95, 297–319 (2021)MathSciNetCrossRef
166.
Zurück zum Zitat Li, Y., Qian, H., Hang, J., et al.: Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build. Environ. 196, 107788 (2021)CrossRef Li, Y., Qian, H., Hang, J., et al.: Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build. Environ. 196, 107788 (2021)CrossRef
168.
Zurück zum Zitat Yang, X., Ou, C., Yang, H., et al.: Transmission of pathogen-laden expiratory droplets in a coach bus. J. Hazard. Mater. 397, 122609 (2020)CrossRef Yang, X., Ou, C., Yang, H., et al.: Transmission of pathogen-laden expiratory droplets in a coach bus. J. Hazard. Mater. 397, 122609 (2020)CrossRef
170.
Zurück zum Zitat D’Alicandro, A.C., Massarotti, N., Mauro, A.: Aerosol hazards in operating rooms: a review of numerical and experimental studies. J. Aerosol Sci. 158, 105823 (2021)CrossRef D’Alicandro, A.C., Massarotti, N., Mauro, A.: Aerosol hazards in operating rooms: a review of numerical and experimental studies. J. Aerosol Sci. 158, 105823 (2021)CrossRef
171.
Zurück zum Zitat Reveil, M., Chen, Y.-H.: Predicting and preventing COVID-19 outbreaks in indoor environments: an agent-based modeling study. Sci. Rep. 12, 16076 (2022)CrossRef Reveil, M., Chen, Y.-H.: Predicting and preventing COVID-19 outbreaks in indoor environments: an agent-based modeling study. Sci. Rep. 12, 16076 (2022)CrossRef
172.
Zurück zum Zitat Löhner, R., Antil, H., Srinivasan, A., et al.: High-fidelity simulation of pathogen propagation, transmission and mitigation in the built environment. Arch. Comput. Methods Eng. 28, 4237–4262 (2021)MathSciNetCrossRef Löhner, R., Antil, H., Srinivasan, A., et al.: High-fidelity simulation of pathogen propagation, transmission and mitigation in the built environment. Arch. Comput. Methods Eng. 28, 4237–4262 (2021)MathSciNetCrossRef
173.
Zurück zum Zitat Wang, J., Tang, H., Wang, J., Zhong, Z.: An agent-based study on the airborne transmission risk of infectious disease in a fever clinic during COVID-19 pandemic. Build. Environ. 218, 109118 (2022)CrossRef Wang, J., Tang, H., Wang, J., Zhong, Z.: An agent-based study on the airborne transmission risk of infectious disease in a fever clinic during COVID-19 pandemic. Build. Environ. 218, 109118 (2022)CrossRef
174.
Zurück zum Zitat Löhner, R., Antil, H., Gimenez, J.M., et al.: A deterministic pathogen transmission model based on high-fidelity physics. Comput. Methods Appl. Mech. Eng. 401, 114929 (2022)MathSciNetCrossRef Löhner, R., Antil, H., Gimenez, J.M., et al.: A deterministic pathogen transmission model based on high-fidelity physics. Comput. Methods Appl. Mech. Eng. 401, 114929 (2022)MathSciNetCrossRef
175.
Zurück zum Zitat Altamimi, T., Khalil, H., Rajus, V.S., et al.: Cell-DEVS models with BIM integration for airborne transmission of COVID-19 indoors. In: Symposium on Simulation in Architecture and Urban Design SimAUD (2021) Altamimi, T., Khalil, H., Rajus, V.S., et al.: Cell-DEVS models with BIM integration for airborne transmission of COVID-19 indoors. In: Symposium on Simulation in Architecture and Urban Design SimAUD (2021)
177.
Zurück zum Zitat Petropoulos, F., Makridakis, S., Stylianou, N.: COVID-19: forecasting confirmed cases and deaths with a simple time series model. Int. J. Forecast. 38, 439–452 (2022)CrossRef Petropoulos, F., Makridakis, S., Stylianou, N.: COVID-19: forecasting confirmed cases and deaths with a simple time series model. Int. J. Forecast. 38, 439–452 (2022)CrossRef
178.
Zurück zum Zitat Tsang, T.-W., Mui, K.-W., Wong, L.-T.: Computational Fluid Dynamics (CFD) studies on airborne transmission in hospitals: a review on the research approaches and the challenges. J. Build. Eng. 63, 105533 (2022)CrossRef Tsang, T.-W., Mui, K.-W., Wong, L.-T.: Computational Fluid Dynamics (CFD) studies on airborne transmission in hospitals: a review on the research approaches and the challenges. J. Build. Eng. 63, 105533 (2022)CrossRef
179.
Zurück zum Zitat Guo, Y., Qian, H., Sun, Z., et al.: Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). Sustain. Cities Soc. 67, 102719 (2021)CrossRef Guo, Y., Qian, H., Sun, Z., et al.: Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). Sustain. Cities Soc. 67, 102719 (2021)CrossRef
180.
Zurück zum Zitat Motamedi, H., Shirzadi, M., Tominaga, Y., Mirzaei, P.A.: CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Sustain. Cities Soc. 76, 103397 (2022)CrossRef Motamedi, H., Shirzadi, M., Tominaga, Y., Mirzaei, P.A.: CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Sustain. Cities Soc. 76, 103397 (2022)CrossRef
181.
Zurück zum Zitat Wan, M.P., Sze To, G.N., Chao, C.Y.H., et al.: Modeling the fate of expiratory aerosols and the associated infection risk in an aircraft cabin environment. Aerosol Sci. Technol. 43, 322–343 (2009)CrossRef Wan, M.P., Sze To, G.N., Chao, C.Y.H., et al.: Modeling the fate of expiratory aerosols and the associated infection risk in an aircraft cabin environment. Aerosol Sci. Technol. 43, 322–343 (2009)CrossRef
182.
Zurück zum Zitat Zhang, Z., Capecelatro, J., Maki, K.: On the utility of a well-mixed model for predicting disease transmission on an urban bus. AIP Adv. 11, 085229 (2021)CrossRef Zhang, Z., Capecelatro, J., Maki, K.: On the utility of a well-mixed model for predicting disease transmission on an urban bus. AIP Adv. 11, 085229 (2021)CrossRef
183.
Zurück zum Zitat Chen, C., Lin, C.-H., Long, Z., Chen, Q.: Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and M arkov chain method. Indoor Air. 24, 81–92 (2014)CrossRef Chen, C., Lin, C.-H., Long, Z., Chen, Q.: Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and M arkov chain method. Indoor Air. 24, 81–92 (2014)CrossRef
184.
Zurück zum Zitat Tan, S., Zhang, Z., Maki, K., et al.: Beyond well-mixed: a simple probabilistic model of airborne disease transmission in indoor spaces. Indoor Air. 32, e13015 (2022)CrossRef Tan, S., Zhang, Z., Maki, K., et al.: Beyond well-mixed: a simple probabilistic model of airborne disease transmission in indoor spaces. Indoor Air. 32, e13015 (2022)CrossRef
185.
Zurück zum Zitat Huang, J., Jones, P., Zhang, A., et al.: Outdoor airborne transmission of coronavirus among apartments in high-density cities. Front. Built Environ. 48 (2021) Huang, J., Jones, P., Zhang, A., et al.: Outdoor airborne transmission of coronavirus among apartments in high-density cities. Front. Built Environ. 48 (2021)
186.
Zurück zum Zitat Aliabadi, A.A., Rogak, S.N., Bartlett, K.H., Green, S.I.: Preventing airborne disease transmission: review of methods for ventilation design in health care facilities. Adv. Prev. Med. 2011, 1 (2011)CrossRef Aliabadi, A.A., Rogak, S.N., Bartlett, K.H., Green, S.I.: Preventing airborne disease transmission: review of methods for ventilation design in health care facilities. Adv. Prev. Med. 2011, 1 (2011)CrossRef
187.
Zurück zum Zitat Cheng, P., Luo, K., Xiao, S., et al.: Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. J. Hazard. Mater. 425, 128051 (2022)CrossRef Cheng, P., Luo, K., Xiao, S., et al.: Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. J. Hazard. Mater. 425, 128051 (2022)CrossRef
188.
Zurück zum Zitat Mukherjee, D., Wadhwa, G.: A mesoscale agent based modeling framework for flow-mediated infection transmission in indoor occupied spaces. Comput. Methods Appl. Mech. Eng. 401, 115485 (2022)MathSciNetCrossRef Mukherjee, D., Wadhwa, G.: A mesoscale agent based modeling framework for flow-mediated infection transmission in indoor occupied spaces. Comput. Methods Appl. Mech. Eng. 401, 115485 (2022)MathSciNetCrossRef
189.
Zurück zum Zitat Schinko, C., Shao, L., Mueller-Roemer, J., et al.: Accelerated airborne virus spread simulation: coupling agent-based modeling with GPU-accelerated computational fluid dynamics. In: VISIGRAPP (1: GRAPP). pp. 278–285 (2022) Schinko, C., Shao, L., Mueller-Roemer, J., et al.: Accelerated airborne virus spread simulation: coupling agent-based modeling with GPU-accelerated computational fluid dynamics. In: VISIGRAPP (1: GRAPP). pp. 278–285 (2022)
190.
Zurück zum Zitat Lazebnik, T., Alexi, A.: High resolution spatio-temporal model for room-level airborne pandemic spread. Mathematics. 11, 426 (2023)CrossRef Lazebnik, T., Alexi, A.: High resolution spatio-temporal model for room-level airborne pandemic spread. Mathematics. 11, 426 (2023)CrossRef
191.
Zurück zum Zitat Marlow, F., Jacob, J., Sagaut, P.: A multidisciplinary model coupling Lattice-Boltzmann-based CFD and a Social Force Model for the simulation of pollutant dispersion in evacuation situations. Build. Environ. 205, 108212 (2021)CrossRef Marlow, F., Jacob, J., Sagaut, P.: A multidisciplinary model coupling Lattice-Boltzmann-based CFD and a Social Force Model for the simulation of pollutant dispersion in evacuation situations. Build. Environ. 205, 108212 (2021)CrossRef
192.
Zurück zum Zitat Xiang, L., Lee, C.W., Zikanov, O., et al.: Reduced Order Modeling of Transport of Infectious Aerosols in Ventilated Rooms. Available at SSRN 4334331 (2023) Xiang, L., Lee, C.W., Zikanov, O., et al.: Reduced Order Modeling of Transport of Infectious Aerosols in Ventilated Rooms. Available at SSRN 4334331 (2023)
193.
Zurück zum Zitat Rudnick, S., Milton, D.K.: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 13, 237–245 (2003)CrossRef Rudnick, S., Milton, D.K.: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 13, 237–245 (2003)CrossRef
194.
Zurück zum Zitat Xu, Q., Chraibi, M.: On the effectiveness of the measures in supermarkets for reducing contact among customers during COVID-19 period. Sustainability. 12, 9385 (2020)CrossRef Xu, Q., Chraibi, M.: On the effectiveness of the measures in supermarkets for reducing contact among customers during COVID-19 period. Sustainability. 12, 9385 (2020)CrossRef
195.
Zurück zum Zitat Carlotti, P., Massoulié, B., Morez, A., et al.: Respiratory pandemic and indoor aeraulics of classrooms. Build. Environ. 212, 108756 (2022)CrossRef Carlotti, P., Massoulié, B., Morez, A., et al.: Respiratory pandemic and indoor aeraulics of classrooms. Build. Environ. 212, 108756 (2022)CrossRef
196.
Zurück zum Zitat Wang, Q., Li, Y., Lung, D.C., et al.: Aerosol transmission of SARS-CoV-2 due to the chimney effect in two high-rise housing drainage stacks. J. Hazard. Mater. 421, 126799 (2022)CrossRef Wang, Q., Li, Y., Lung, D.C., et al.: Aerosol transmission of SARS-CoV-2 due to the chimney effect in two high-rise housing drainage stacks. J. Hazard. Mater. 421, 126799 (2022)CrossRef
197.
Zurück zum Zitat Ali, B.H., Shahin, M.S., Sangani, M.M.M., et al.: Wastewater aerosols produced during flushing toilets, WWTPs, and irrigation with reclaimed municipal wastewater as indirect exposure to SARS-CoV-2. J. Environ. Chem. Eng. 9, 106201 (2021)CrossRef Ali, B.H., Shahin, M.S., Sangani, M.M.M., et al.: Wastewater aerosols produced during flushing toilets, WWTPs, and irrigation with reclaimed municipal wastewater as indirect exposure to SARS-CoV-2. J. Environ. Chem. Eng. 9, 106201 (2021)CrossRef
200.
Zurück zum Zitat Heida, A., Mraz, A., Hamilton, M.T., et al.: Computational framework for evaluating risk trade-offs in costs associated with legionnaires’ disease risk, energy, and scalding risk for hospital hot water systems. Environ. Sci. Water Res. Technol. 8, 76–97 (2022)CrossRef Heida, A., Mraz, A., Hamilton, M.T., et al.: Computational framework for evaluating risk trade-offs in costs associated with legionnaires’ disease risk, energy, and scalding risk for hospital hot water systems. Environ. Sci. Water Res. Technol. 8, 76–97 (2022)CrossRef
201.
Zurück zum Zitat Hamilton, K., Haas, C.: Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of Legionella in engineered water systems: research gaps and a new framework. Environ. Sci. Water Res. Technol. 2, 599–613 (2016)CrossRef Hamilton, K., Haas, C.: Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of Legionella in engineered water systems: research gaps and a new framework. Environ. Sci. Water Res. Technol. 2, 599–613 (2016)CrossRef
202.
Zurück zum Zitat Mari, L., Casagrandi, R., Bertuzzo, E., et al.: Conditions for transient epidemics of waterborne disease in spatially explicit systems. R. Soc. Open Sci. 6, 181517 (2019)CrossRef Mari, L., Casagrandi, R., Bertuzzo, E., et al.: Conditions for transient epidemics of waterborne disease in spatially explicit systems. R. Soc. Open Sci. 6, 181517 (2019)CrossRef
203.
Zurück zum Zitat Chaysiri, R., Louis, G.E., Chinviriyasit, W.: Modeling the health impact of water and sanitation service deficits on waterborne disease transmission. Adv. Differ. Equ. 2021, 405 (2021)MathSciNetCrossRef Chaysiri, R., Louis, G.E., Chinviriyasit, W.: Modeling the health impact of water and sanitation service deficits on waterborne disease transmission. Adv. Differ. Equ. 2021, 405 (2021)MathSciNetCrossRef
208.
Zurück zum Zitat Li, S., Eisenberg, J.N., Spicknall, I.H., Koopman, J.S.: Dynamics and control of infections transmitted from person to person through the environment. Am. J. Epidemiol. 170, 257–265 (2009)CrossRef Li, S., Eisenberg, J.N., Spicknall, I.H., Koopman, J.S.: Dynamics and control of infections transmitted from person to person through the environment. Am. J. Epidemiol. 170, 257–265 (2009)CrossRef
209.
Zurück zum Zitat Kraay, A.N., Hayashi, M.A., Hernandez-Ceron, N., et al.: Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens. BMC Infect. Dis. 18, 1–13 (2018)CrossRef Kraay, A.N., Hayashi, M.A., Hernandez-Ceron, N., et al.: Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens. BMC Infect. Dis. 18, 1–13 (2018)CrossRef
210.
Zurück zum Zitat Hu, L., Zhang, J., Xiang, Y., Wang, W.: Neural networks-based aerodynamic data modeling: a comprehensive review. IEEE Access. 8, 90805–90823 (2020)CrossRef Hu, L., Zhang, J., Xiang, Y., Wang, W.: Neural networks-based aerodynamic data modeling: a comprehensive review. IEEE Access. 8, 90805–90823 (2020)CrossRef
211.
Zurück zum Zitat Masoumi-Verki, S., Haghighat, F., Eicker, U.: A review of advances towards efficient reduced-order models (ROM) for predicting urban airflow and pollutant dispersion. Build. Environ. 108966, 108966 (2022)CrossRef Masoumi-Verki, S., Haghighat, F., Eicker, U.: A review of advances towards efficient reduced-order models (ROM) for predicting urban airflow and pollutant dispersion. Build. Environ. 108966, 108966 (2022)CrossRef
212.
Zurück zum Zitat Pant, P., Doshi, R., Bahl, P., Barati Farimani, A.: Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations. Phys. Fluids. 33, 107101 (2021)CrossRef Pant, P., Doshi, R., Bahl, P., Barati Farimani, A.: Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations. Phys. Fluids. 33, 107101 (2021)CrossRef
213.
Zurück zum Zitat Calzolari, G., Liu, W.: Deep learning to replace, improve, or aid CFD analysis in built environment applications: a review. Build. Environ. 206, 108315 (2021)CrossRef Calzolari, G., Liu, W.: Deep learning to replace, improve, or aid CFD analysis in built environment applications: a review. Build. Environ. 206, 108315 (2021)CrossRef
214.
Zurück zum Zitat Ivagnes, A., Demo, N., Rozza, G.: Towards a machine learning pipeline in reduced order modelling for inverse problems: neural networks for boundary parametrization, dimensionality reduction and solution manifold approximation. J. Sci. Comput. 95, 1–24 (2023)MathSciNetCrossRef Ivagnes, A., Demo, N., Rozza, G.: Towards a machine learning pipeline in reduced order modelling for inverse problems: neural networks for boundary parametrization, dimensionality reduction and solution manifold approximation. J. Sci. Comput. 95, 1–24 (2023)MathSciNetCrossRef
215.
Zurück zum Zitat Lui, H.F., Wolf, W.R.: Construction of reduced-order models for fluid flows using deep feedforward neural networks. J. Fluid Mech. 872, 963–994 (2019)MathSciNetCrossRef Lui, H.F., Wolf, W.R.: Construction of reduced-order models for fluid flows using deep feedforward neural networks. J. Fluid Mech. 872, 963–994 (2019)MathSciNetCrossRef
216.
Zurück zum Zitat Fukami, K., Hasegawa, K., Nakamura, T., et al.: Model order reduction with neural networks: application to laminar and turbulent flows. SN Comput. Sci. 2, 1–16 (2021)CrossRef Fukami, K., Hasegawa, K., Nakamura, T., et al.: Model order reduction with neural networks: application to laminar and turbulent flows. SN Comput. Sci. 2, 1–16 (2021)CrossRef
217.
Zurück zum Zitat Xiang, S., Fu, X., Zhou, J., et al.: Non-intrusive reduced order model of urban airflow with dynamic boundary conditions. Build. Environ. 187, 107397 (2021)CrossRef Xiang, S., Fu, X., Zhou, J., et al.: Non-intrusive reduced order model of urban airflow with dynamic boundary conditions. Build. Environ. 187, 107397 (2021)CrossRef
218.
Zurück zum Zitat Chen, W., Wang, Q., Hesthaven, J.S., Zhang, C.: Physics-informed machine learning for reduced-order modeling of nonlinear problems. J. Comput. Phys. 446, 110666 (2021)MathSciNetCrossRef Chen, W., Wang, Q., Hesthaven, J.S., Zhang, C.: Physics-informed machine learning for reduced-order modeling of nonlinear problems. J. Comput. Phys. 446, 110666 (2021)MathSciNetCrossRef
219.
Zurück zum Zitat Daniel, T., Casenave, F., Akkari, N., Ryckelynck, D.: Model order reduction assisted by deep neural networks (ROM-net). Adv. Model. Simul. Eng. Sci. 7, 1–27 (2020)CrossRef Daniel, T., Casenave, F., Akkari, N., Ryckelynck, D.: Model order reduction assisted by deep neural networks (ROM-net). Adv. Model. Simul. Eng. Sci. 7, 1–27 (2020)CrossRef
220.
Zurück zum Zitat Torregrosa, A., Garc𝚤a-Cuevas, L., Quintero, P., Cremades, A.: On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerosp. Sci. Technol. 115, 106845 (2021)CrossRef Torregrosa, A., Garc𝚤a-Cuevas, L., Quintero, P., Cremades, A.: On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerosp. Sci. Technol. 115, 106845 (2021)CrossRef
221.
Zurück zum Zitat Li, T., Wu, T., Liu, Z.: Nonlinear unsteady bridge aerodynamics: reduced-order modeling based on deep LSTM networks. J. Wind Eng. Ind. Aerodyn. 198, 104116 (2020)CrossRef Li, T., Wu, T., Liu, Z.: Nonlinear unsteady bridge aerodynamics: reduced-order modeling based on deep LSTM networks. J. Wind Eng. Ind. Aerodyn. 198, 104116 (2020)CrossRef
222.
Zurück zum Zitat Quilodrán-Casas, C., Arcucci, R., Pain, C., Guo, Y.: Adversarially trained LSTMs on reduced order models of urban air pollution simulations. arXiv preprint arXiv:210101568 (2021) Quilodrán-Casas, C., Arcucci, R., Pain, C., Guo, Y.: Adversarially trained LSTMs on reduced order models of urban air pollution simulations. arXiv preprint arXiv:210101568 (2021)
223.
Zurück zum Zitat Quilodrán-Casas, C., Silva, V.L., Arcucci, R., et al.: Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic. Neurocomputing. 470, 11–28 (2022)CrossRef Quilodrán-Casas, C., Silva, V.L., Arcucci, R., et al.: Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic. Neurocomputing. 470, 11–28 (2022)CrossRef
224.
Zurück zum Zitat Nguyen, L., Raissi, M., Seshaiyer, P.: Modeling, analysis and physics informed neural network approaches for studying the dynamics of COVID-19 involving human-human and human-pathogen interaction. Comput. Math. Biophys. 10, 1–17 (2022)MathSciNetCrossRef Nguyen, L., Raissi, M., Seshaiyer, P.: Modeling, analysis and physics informed neural network approaches for studying the dynamics of COVID-19 involving human-human and human-pathogen interaction. Comput. Math. Biophys. 10, 1–17 (2022)MathSciNetCrossRef
225.
Zurück zum Zitat Nguyen, L., Ghosal, A., Nagalia, R., Seshaiyer, P.: Mathematical modelling and simulation using an efficient PINNs algorithm to understand spread of infection in enclosed spaces (2021) Nguyen, L., Ghosal, A., Nagalia, R., Seshaiyer, P.: Mathematical modelling and simulation using an efficient PINNs algorithm to understand spread of infection in enclosed spaces (2021)
226.
Zurück zum Zitat Majumdar, R., Karande, S., Vig, L.: DeepEpiSolver: unravelling inverse problems in Covid, HIV, ebola and disease transmission. arXiv preprint arXiv:230314194 (2023) Majumdar, R., Karande, S., Vig, L.: DeepEpiSolver: unravelling inverse problems in Covid, HIV, ebola and disease transmission. arXiv preprint arXiv:230314194 (2023)
227.
Zurück zum Zitat Shaier, S., Raissi, M., Seshaiyer, P.: Data-driven approaches for predicting spread of infectious diseases through DINNs: disease informed neural networks. arXiv preprint arXiv:211005445 (2021) Shaier, S., Raissi, M., Seshaiyer, P.: Data-driven approaches for predicting spread of infectious diseases through DINNs: disease informed neural networks. arXiv preprint arXiv:211005445 (2021)
Metadaten
Titel
Disease Spread Control in Cruise Ships: Monitoring, Simulation, and Decision Making
verfasst von
Georgios Triantafyllou
Panagiotis G. Kalozoumis
Eirini Cholopoulou
Dimitris K. Iakovidis
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48831-3_8