Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2015

01.01.2015 | Research Paper

Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

verfasst von: Farid Taherkhani, Hamed Akbarzadeh, Mostafa Feyzi, Hamid Reza Rafiee

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akbarzadeh H, Parsafar GA (2009) A molecular-dynamics study of thermal and physical properties of platinum nanoclusters. Fluid Phase Equilib 280:16CrossRef Akbarzadeh H, Parsafar GA (2009) A molecular-dynamics study of thermal and physical properties of platinum nanoclusters. Fluid Phase Equilib 280:16CrossRef
Zurück zum Zitat Akbarzadeh H, Taherkhani F (2013) Cluster size dependence of surface energy of Ni nanocluster: a molecular dynamics study. Chem Phys Lett 558:57CrossRef Akbarzadeh H, Taherkhani F (2013) Cluster size dependence of surface energy of Ni nanocluster: a molecular dynamics study. Chem Phys Lett 558:57CrossRef
Zurück zum Zitat Akbarzadeh H, Yaghoubi H, Shamkhali AN, Taherkhani F (2013) Effects of gas adsorption on the graphite-supported Ag nanoclusters: a molecular dynamics study. J Phys Chem C 117:26287–26294CrossRef Akbarzadeh H, Yaghoubi H, Shamkhali AN, Taherkhani F (2013) Effects of gas adsorption on the graphite-supported Ag nanoclusters: a molecular dynamics study. J Phys Chem C 117:26287–26294CrossRef
Zurück zum Zitat Akbarzadeh H, Yaghoubi H, Shamkhali AN, Taherkhani F (2014) CO adsorption on Ag nanoclusters supported on carbon nanotube: a molecular dynamics study. J Phys Chem C 118:9187–9195CrossRef Akbarzadeh H, Yaghoubi H, Shamkhali AN, Taherkhani F (2014) CO adsorption on Ag nanoclusters supported on carbon nanotube: a molecular dynamics study. J Phys Chem C 118:9187–9195CrossRef
Zurück zum Zitat Ala-Nissila T, Ferrando R, Ying S (2002) Collective and single particle diffusion on surfaces. Adv Phys 51:949–1078CrossRef Ala-Nissila T, Ferrando R, Ying S (2002) Collective and single particle diffusion on surfaces. Adv Phys 51:949–1078CrossRef
Zurück zum Zitat Baletto F, Ferrando R (2005) Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:1CrossRef Baletto F, Ferrando R (2005) Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:1CrossRef
Zurück zum Zitat Berry RS, Wales DJ (1989) Freezing, melting, spinodals, and clusters. Phys Rev Lett 63:156CrossRef Berry RS, Wales DJ (1989) Freezing, melting, spinodals, and clusters. Phys Rev Lett 63:156CrossRef
Zurück zum Zitat Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper–gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 38:2231–2243CrossRef Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper–gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 38:2231–2243CrossRef
Zurück zum Zitat Bulgac A, Kusnezov D (1992) Phase transitions in Na7–Na9 microclusters. Phys Rev B 45:988CrossRef Bulgac A, Kusnezov D (1992) Phase transitions in Na7–Na9 microclusters. Phys Rev B 45:988CrossRef
Zurück zum Zitat Butrymowicz DB, Manning JR, Read E (1974) Diffusion in copper and copper alloys part V. Diffusion in systems involving elements of group VA. Phys Chem Ref Data 3:572 Butrymowicz DB, Manning JR, Read E (1974) Diffusion in copper and copper alloys part V. Diffusion in systems involving elements of group VA. Phys Chem Ref Data 3:572
Zurück zum Zitat Cai J, Ye YY (1996) Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys Rev B 54:8398 Cai J, Ye YY (1996) Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys Rev B 54:8398
Zurück zum Zitat Cheng D, Huang S, Wang W (2006) Thermal behavior of core–shell and three-shell layered clusters: melting of Cu1Au54 and Cu12Au43. Phys Rev B 74:064117CrossRef Cheng D, Huang S, Wang W (2006) Thermal behavior of core–shell and three-shell layered clusters: melting of Cu1Au54 and Cu12Au43. Phys Rev B 74:064117CrossRef
Zurück zum Zitat Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22CrossRef Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22CrossRef
Zurück zum Zitat Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature (London) 269:81CrossRef Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature (London) 269:81CrossRef
Zurück zum Zitat Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm. J Chem Phys 116:1536CrossRef Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm. J Chem Phys 116:1536CrossRef
Zurück zum Zitat Della Pina C, Falletta E, Prati L, Rossi M (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095CrossRef Della Pina C, Falletta E, Prati L, Rossi M (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095CrossRef
Zurück zum Zitat Doye JPK, Wales DJ (1998) Thermodynamics of global optimization. Phys Rev Lett 80:357CrossRef Doye JPK, Wales DJ (1998) Thermodynamics of global optimization. Phys Rev Lett 80:357CrossRef
Zurück zum Zitat Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRef Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRef
Zurück zum Zitat Gao Y, Shao N, Pei Y, Zeng XC (2010) Icosahedral crown gold nanocluster Au43Cu12 with high catalytic activity. Nano Lett 10:1055–1062CrossRef Gao Y, Shao N, Pei Y, Zeng XC (2010) Icosahedral crown gold nanocluster Au43Cu12 with high catalytic activity. Nano Lett 10:1055–1062CrossRef
Zurück zum Zitat Garzón IL, Michaelian K, Beltrán MR, Posada-Amarillas A, Ordejón E, Artacho P, Sánchez-Portal D, Soler JM (1998) Lowest energy structures of gold nanoclusters. Phys Rev Lett 81:1600 Garzón IL, Michaelian K, Beltrán MR, Posada-Amarillas A, Ordejón E, Artacho P, Sánchez-Portal D, Soler JM (1998) Lowest energy structures of gold nanoclusters. Phys Rev Lett 81:1600
Zurück zum Zitat Häkkinen H, Moseler M, Kostko O, Morgner N, Hoffmann MA, Issendorff Bv (2004) Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. Phys Rev Lett 93:093401CrossRef Häkkinen H, Moseler M, Kostko O, Morgner N, Hoffmann MA, Issendorff Bv (2004) Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. Phys Rev Lett 93:093401CrossRef
Zurück zum Zitat Holmberg N, Chen JC, Foster AS, Laasonen K (2014) Dissolution of NaCl nanocrystals: an ab initio molecular dynamics study. Phys Chem Chem Phys 16:17437 Holmberg N, Chen JC, Foster AS, Laasonen K (2014) Dissolution of NaCl nanocrystals: an ab initio molecular dynamics study. Phys Chem Chem Phys 16:17437
Zurück zum Zitat Holzapfel C, Chakraborty S, Rubie D, Frost D (2009) Fe–Mg interdiffusion in wadsleyite: the role of pressure, temperature and composition and the magnitude of jump in diffusion rates at the 410 km discontinuity. Phys Earth Planet Inter 172:28–33CrossRef Holzapfel C, Chakraborty S, Rubie D, Frost D (2009) Fe–Mg interdiffusion in wadsleyite: the role of pressure, temperature and composition and the magnitude of jump in diffusion rates at the 410 km discontinuity. Phys Earth Planet Inter 172:28–33CrossRef
Zurück zum Zitat Huang S-P, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236CrossRef Huang S-P, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236CrossRef
Zurück zum Zitat Huang S-P, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf Sci 545:163–179CrossRef Huang S-P, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf Sci 545:163–179CrossRef
Zurück zum Zitat Huang W, Ji M, Dong C-D, Gu X, Wang L-M, Gong XG, Wang L-S (2008) Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACS Nano 2:897–904CrossRef Huang W, Ji M, Dong C-D, Gu X, Wang L-M, Gong XG, Wang L-S (2008) Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACS Nano 2:897–904CrossRef
Zurück zum Zitat Huijben J, van Houselt A, Zandvliet HJW, Poelsema B (2006a) Semiconductors II: surfaces, interfaces, microstructures, and related topics-influence of dimer buckling on dimer diffusion: a scanning tunneling microscopy study. Phys Rev B 73:73311CrossRef Huijben J, van Houselt A, Zandvliet HJW, Poelsema B (2006a) Semiconductors II: surfaces, interfaces, microstructures, and related topics-influence of dimer buckling on dimer diffusion: a scanning tunneling microscopy study. Phys Rev B 73:73311CrossRef
Zurück zum Zitat Huijben J, van Houselt A, Zandvliet HJW, Poelsema B (2006b) Influence of dimer buckling on dimer diffusion: a scanning tunneling microscopy study. Phys Rev B 73:073311CrossRef Huijben J, van Houselt A, Zandvliet HJW, Poelsema B (2006b) Influence of dimer buckling on dimer diffusion: a scanning tunneling microscopy study. Phys Rev B 73:073311CrossRef
Zurück zum Zitat Jellinek J, Krissinel EB (1999) In: Jellinek J (ed) Theory of atomic and molecular clusters. Springer, Berlin, p 277CrossRef Jellinek J, Krissinel EB (1999) In: Jellinek J (ed) Theory of atomic and molecular clusters. Springer, Berlin, p 277CrossRef
Zurück zum Zitat Jesser WA, Shneck RZ, Gile WW (2004) Solid–liquid equilibria in nanoparticles of Pb–Bi alloys. Phys Rev B 69:44121CrossRef Jesser WA, Shneck RZ, Gile WW (2004) Solid–liquid equilibria in nanoparticles of Pb–Bi alloys. Phys Rev B 69:44121CrossRef
Zurück zum Zitat Kart H, Tomak M, Çağin T (2005) Thermal and mechanical properties of Cu–Au intermetallic alloys. Modell Simul Mater Sci Eng 13:657CrossRef Kart H, Tomak M, Çağin T (2005) Thermal and mechanical properties of Cu–Au intermetallic alloys. Modell Simul Mater Sci Eng 13:657CrossRef
Zurück zum Zitat Kim SG, Tomanek D (1994) Melting the fullerenes: a molecular dynamics study. Phys Rev Lett 72:418 Kim SG, Tomanek D (1994) Melting the fullerenes: a molecular dynamics study. Phys Rev Lett 72:418
Zurück zum Zitat Kim DH, Kim HY, Kim HG, Ryu JH, Lee HM (2008) The solid-to-liquid transition region of an Ag–Pd bimetallic nanocluster. J Phys 20:035208 Kim DH, Kim HY, Kim HG, Ryu JH, Lee HM (2008) The solid-to-liquid transition region of an Ag–Pd bimetallic nanocluster. J Phys 20:035208
Zurück zum Zitat Kuntova Z, Rossi G, Ferrando R (2008) Melting of core–shell Ag–Ni and Ag–Co nanoclusters studied via molecular dynamics simulations. Phys Rev B 77:205431CrossRef Kuntova Z, Rossi G, Ferrando R (2008) Melting of core–shell Ag–Ni and Ag–Co nanoclusters studied via molecular dynamics simulations. Phys Rev B 77:205431CrossRef
Zurück zum Zitat Kunz RE, Berry RS (1993) Coexistence of multiple phases in finite systems. Phys Rev Lett 71:987CrossRef Kunz RE, Berry RS (1993) Coexistence of multiple phases in finite systems. Phys Rev Lett 71:987CrossRef
Zurück zum Zitat Laasonen K, Panizon E, Bochicchio D, Ferrando R (2013) Competition between icosahedral motifs in AgCu, AgNi, and AgCo nanoalloys: a combined atomistic–DFT Study. J Phys Chem C 117:26405CrossRef Laasonen K, Panizon E, Bochicchio D, Ferrando R (2013) Competition between icosahedral motifs in AgCu, AgNi, and AgCo nanoalloys: a combined atomistic–DFT Study. J Phys Chem C 117:26405CrossRef
Zurück zum Zitat Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:38 Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:38
Zurück zum Zitat Liu X, Wang A, Wang X, Mou C-Y, Zhang T (2008) Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun 27:3187–3189CrossRef Liu X, Wang A, Wang X, Mou C-Y, Zhang T (2008) Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun 27:3187–3189CrossRef
Zurück zum Zitat Lott K, Nirk T, Volobujeva O (2002) Chemical self-diffusion in undoped ZnS and in undoped CdSe. Cryst Eng 5:147–153CrossRef Lott K, Nirk T, Volobujeva O (2002) Chemical self-diffusion in undoped ZnS and in undoped CdSe. Cryst Eng 5:147–153CrossRef
Zurück zum Zitat Luo J, Landmann U, Jortner J (1987) In: Jena P, Rao BK, Khanna S (eds) Physics and chemistry of small cluster, vol 158., NATO ASI series BPlenum, New York, p 155 Luo J, Landmann U, Jortner J (1987) In: Jena P, Rao BK, Khanna S (eds) Physics and chemistry of small cluster, vol 158., NATO ASI series BPlenum, New York, p 155
Zurück zum Zitat Lv YJ, Chen M (2011) Thermophysical properties of undercooled alloys: an overview of the molecular simulation approaches. Int J Mol Sci 12:278–316CrossRef Lv YJ, Chen M (2011) Thermophysical properties of undercooled alloys: an overview of the molecular simulation approaches. Int J Mol Sci 12:278–316CrossRef
Zurück zum Zitat Maillet JB, Boutin A, Fuchs AH (1996) Numerical evidence of an embryonic orientational phase transition in small nitrogen clusters. Phys Rev Lett 76:336CrossRef Maillet JB, Boutin A, Fuchs AH (1996) Numerical evidence of an embryonic orientational phase transition in small nitrogen clusters. Phys Rev Lett 76:336CrossRef
Zurück zum Zitat Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B (1997) Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems. Mater Sci Eng A 239:889–898CrossRef Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B (1997) Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems. Mater Sci Eng A 239:889–898CrossRef
Zurück zum Zitat Mejía-Rosales SJ, Fernández-Navarro C, Pérez-Tijerina E, Montejano-Carrizales JM, José-Yacamán M (2006) Two-stage melting of Au–Pd nanoparticles. J Phys Chem B 110(26):12884–12889CrossRef Mejía-Rosales SJ, Fernández-Navarro C, Pérez-Tijerina E, Montejano-Carrizales JM, José-Yacamán M (2006) Two-stage melting of Au–Pd nanoparticles. J Phys Chem B 110(26):12884–12889CrossRef
Zurück zum Zitat Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501 Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501
Zurück zum Zitat Negreiros F, Taherkhani F, Parsafar G, Fortunelli A (2012) Kinetics of chemical ordering in Ag–Pt nanoalloy via first-principal simulation. J. Chem. Phys. 137:194302CrossRef Negreiros F, Taherkhani F, Parsafar G, Fortunelli A (2012) Kinetics of chemical ordering in Ag–Pt nanoalloy via first-principal simulation. J. Chem. Phys. 137:194302CrossRef
Zurück zum Zitat Özdemir S, Tomak M, Uludoğan M, Çağın T (2004) Liquid properties of Pd–Ni alloys. J Non-Cryst Solids 337:101–108CrossRef Özdemir S, Tomak M, Uludoğan M, Çağın T (2004) Liquid properties of Pd–Ni alloys. J Non-Cryst Solids 337:101–108CrossRef
Zurück zum Zitat Panizon E, Bochicchio D, Rossi G, Ferrando R (2014) Tuning the structure of nanoparticles by small concentrations of impurities. Chem Mater 26:3354CrossRef Panizon E, Bochicchio D, Rossi G, Ferrando R (2014) Tuning the structure of nanoparticles by small concentrations of impurities. Chem Mater 26:3354CrossRef
Zurück zum Zitat Qi Y, Çağın T, Kimura Y, Goddard WA III (1999) Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu–Ag and Cu–Ni. Phys Rev B 59:3527CrossRef Qi Y, Çağın T, Kimura Y, Goddard WA III (1999) Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu–Ag and Cu–Ni. Phys Rev B 59:3527CrossRef
Zurück zum Zitat Qi Y, Çağin T, Kimura Y, Goddard W III (2001) A. scosities of liquid metal alloys from nonequilibrium molecular dynamics. J Comput Aided Mater Des 8:233–243CrossRef Qi Y, Çağin T, Kimura Y, Goddard W III (2001) A. scosities of liquid metal alloys from nonequilibrium molecular dynamics. J Comput Aided Mater Des 8:233–243CrossRef
Zurück zum Zitat Rodrıguez-López J, Montejano-Carrizales J, José-Yacamán M (2003) Molecular dynamics study of bimetallic nanoparticles: the case of Au x Cu y alloy clusters. Appl Surf Sci 219:56–63CrossRef Rodrıguez-López J, Montejano-Carrizales J, José-Yacamán M (2003) Molecular dynamics study of bimetallic nanoparticles: the case of Au x Cu y alloy clusters. Appl Surf Sci 219:56–63CrossRef
Zurück zum Zitat Ross J, Andres RP (1981) Melting temperature of small cluster. Surf Sci 106:1CrossRef Ross J, Andres RP (1981) Melting temperature of small cluster. Surf Sci 106:1CrossRef
Zurück zum Zitat Sankaranarayanan SK, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys Rev B 71:195415CrossRef Sankaranarayanan SK, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys Rev B 71:195415CrossRef
Zurück zum Zitat Shirinyan AS, Gusak AM (2004) Phase diagrams of decomposing nanoalloys. Philos Magn 84:79CrossRef Shirinyan AS, Gusak AM (2004) Phase diagrams of decomposing nanoalloys. Philos Magn 84:79CrossRef
Zurück zum Zitat Shirinyan AS, Pasichnyy MO (2005) Size-induced hysteresis in the process of nucleation and phase separation in a nanopowder. Nanotechnology 16:724CrossRef Shirinyan AS, Pasichnyy MO (2005) Size-induced hysteresis in the process of nucleation and phase separation in a nanopowder. Nanotechnology 16:724CrossRef
Zurück zum Zitat Shirinyan A, Wautelet M, Belogorodsky YJ (2006) Solubility diagram of the Cu–Ni nanosystem. J Phys 18:537 Shirinyan A, Wautelet M, Belogorodsky YJ (2006) Solubility diagram of the Cu–Ni nanosystem. J Phys 18:537
Zurück zum Zitat Smith W, Todorov ITA (2006) Short description of DL_POLY. Mol Simul 32:935–943CrossRef Smith W, Todorov ITA (2006) Short description of DL_POLY. Mol Simul 32:935–943CrossRef
Zurück zum Zitat Taherkhani F, Rezania H (2012) Temperature and size dependency of thermal conductivity of aluminum nanocluster. J Nanopart Res 14:1–8 Taherkhani F, Rezania H (2012) Temperature and size dependency of thermal conductivity of aluminum nanocluster. J Nanopart Res 14:1–8
Zurück zum Zitat Taherkhani F, Negreiros FR, Parsafar G, Fortunelli A (2010) Simulation of vacancy diffusion in a silver nanocluster. Chem Phys Lett 498:312–316CrossRef Taherkhani F, Negreiros FR, Parsafar G, Fortunelli A (2010) Simulation of vacancy diffusion in a silver nanocluster. Chem Phys Lett 498:312–316CrossRef
Zurück zum Zitat Taherkhani F, Akbarzadeh H, Abroshan H, Fortunelli A (2012) Dependence of self-diffusion coefficient, surface energy, on size, temperature, and Debye temperature on size for aluminum nanoclusters. Fluid Phase Equilib 335:26CrossRef Taherkhani F, Akbarzadeh H, Abroshan H, Fortunelli A (2012) Dependence of self-diffusion coefficient, surface energy, on size, temperature, and Debye temperature on size for aluminum nanoclusters. Fluid Phase Equilib 335:26CrossRef
Zurück zum Zitat Taherkhani F, Akbarzadeh H, Rezania H (2014) Chemical ordering effect on melting temperature, surface energy of copper–gold bimetallic nanocluster. J Alloy Compd 617:746CrossRef Taherkhani F, Akbarzadeh H, Rezania H (2014) Chemical ordering effect on melting temperature, surface energy of copper–gold bimetallic nanocluster. J Alloy Compd 617:746CrossRef
Zurück zum Zitat Toai TJ, Rossi G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58CrossRef Toai TJ, Rossi G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58CrossRef
Zurück zum Zitat Valle´e R, Wautelet M, Dauchot JP, Hecq M (2001) Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 12:8CrossRef Valle´e R, Wautelet M, Dauchot JP, Hecq M (2001) Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 12:8CrossRef
Zurück zum Zitat Van Hoof T, Hou M (2005) Structural and thermodynamic properties of Ag–Co nanoclusters. Phys Rev B 72:15434 Van Hoof T, Hou M (2005) Structural and thermodynamic properties of Ag–Co nanoclusters. Phys Rev B 72:15434
Zurück zum Zitat Wales DJ, Berry RS (1994) Coexistence in finite systems. Phys Rev Lett 73:875CrossRef Wales DJ, Berry RS (1994) Coexistence in finite systems. Phys Rev Lett 73:875CrossRef
Zurück zum Zitat Xing X, Danell RM, Garzón IL, Michaelian K, Blom MN, Burns MM, Parks JH (2005) Size-dependent fivefold and icosahedral symmetry in silver clusters. Phys Rev B 72:081405CrossRef Xing X, Danell RM, Garzón IL, Michaelian K, Blom MN, Burns MM, Parks JH (2005) Size-dependent fivefold and icosahedral symmetry in silver clusters. Phys Rev B 72:081405CrossRef
Zurück zum Zitat Yin J, Shan S, Yang L, Mott D, Malis O, Petkov V, Cai F, Shan Ng M, Luo J, Chen BH (2012) Gold–copper nanoparticles: nanostructural evolution and bifunctional catalytic sites. Chem Mater 24:4662–4674CrossRef Yin J, Shan S, Yang L, Mott D, Malis O, Petkov V, Cai F, Shan Ng M, Luo J, Chen BH (2012) Gold–copper nanoparticles: nanostructural evolution and bifunctional catalytic sites. Chem Mater 24:4662–4674CrossRef
Zurück zum Zitat Yoo W-J, Li C-J (2007) Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. Tetrahedron Lett 48:1033–1035CrossRef Yoo W-J, Li C-J (2007) Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. Tetrahedron Lett 48:1033–1035CrossRef
Zurück zum Zitat Zhang L (2012) A molecular dynamics study of thermal behavior of melting an Au54Cu1 cluster. Proc Eng 36:207–211CrossRef Zhang L (2012) A molecular dynamics study of thermal behavior of melting an Au54Cu1 cluster. Proc Eng 36:207–211CrossRef
Zurück zum Zitat Zhang L, Zhang C-B, Qi Y (2008) Local structure changes of 54-, 55-, 56-atom copper clusters on heating. Phys Lett A 372:2874–2880CrossRef Zhang L, Zhang C-B, Qi Y (2008) Local structure changes of 54-, 55-, 56-atom copper clusters on heating. Phys Lett A 372:2874–2880CrossRef
Metadaten
Titel
Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms
verfasst von
Farid Taherkhani
Hamed Akbarzadeh
Mostafa Feyzi
Hamid Reza Rafiee
Publikationsdatum
01.01.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-2860-5

Weitere Artikel der Ausgabe 1/2015

Journal of Nanoparticle Research 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.