Skip to main content
main-content

Über dieses Buch

Dynamic Single-Use Bioreactors Used in Modern Liter- and m3- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up, by Christian Löffelholz, Stephan C. Kaiser, Matthias Kraume, Regine Eibl , Dieter Eibl. Orbitally Shaken Single-Use Bioreactors, by Wolf Klöckner, Sylvia Diederichs, Jochen Büchs.

Therapeutic Human Cells: Manufacture for Cell Therapy/Regenerative Medicine by Christian van den Bos, Robert Keefe, Carmen Schirmaier, Michael McCaman.

Fast Single-Use VLP Vaccine Productions Based on Insect Cells and the Baculovirus Expression Vector System: Influenza as Case Study by Regine Eibl, Nina Steiger, Sabine Wellnitz, Tiago Vicente, Corinne John, Dieter Eibl.

Microbial High Cell Density Fermentations in a Stirred Single-Use Bioreactor by Thomas Dreher, Bart Walcarius, Ute Husemann, Franziska Klingenberg, Christian Zahnow, Thorsten Adams, Davy de Wilde, Peter Casteels, Gerhard Greller.

Quorus Bioreactor: A New Perfusion-Based Technology for Microbial Cultivation by Sheena J. Fraser, Christian Endres.

Cultivation of Marine Microorganisms in Single-Use Systems by Friederike Hillig, Maciej Pilarek, Stefan Junne, Peter Neubauer.

Flexible Biomanufacturing Processes that Address the Needs of the Future by Bernhard Diel, Christian Manzke, Thorsten Peuker.

An Approach to Quality and Security of Supply for Single-Use Bioreactors by Magali Barbaroux, Susanne Gerighausen, Heiko Hackel.

A Risk Analysis for Production Processes with Disposable Bioreactors by Tobias Merseburger, Ina Pahl, Daniel Müller, Markus Tanner.

Inhaltsverzeichnis

Frontmatter

Dynamic Single-Use Bioreactors Used in Modern Liter- and m3- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up

Abstract
During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the “must have” for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim’s BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.
Christian Löffelholz, Stephan C. Kaiser, Matthias Kraume, Regine Eibl, Dieter Eibl

Orbitally Shaken Single-Use Bioreactors

Abstract
Orbitally shaken single-use reactors are promising reactors for upstream processing, because they fulfill three general requirements for single-use equipment. First, the design of the disposable parts is inherently simple and cost-efficient, because no complex built-in elements such as baffles or rotating stirrers are required. Second, the liquid distribution induced by orbital shaking is well-defined and accurately predictable. Third, the scale-up from small-scale systems, where shaken bioreactors are commonly applied, is simple and has been successfully proven up to the cubic meter scale. However, orbitally shaken single-use reactors are only suitable for certain applications such as cultivating animal or plant cells with low oxygen demand. Thus, detailed knowledge about the performance of such systems on different scales is essential to exploit their full potential. This article presents an overview about opportunities and limitations of shaken single-use reactors.
Graphical Abstract
Wolf Klöckner, Sylvia Diederichs, Jochen Büchs

Therapeutic Human Cells: Manufacture for Cell Therapy/Regenerative Medicine

Abstract
Human primary cells (e.g. adult stem cells) as well as differentiated cells, including those of the immune system, have been found to be therapeutically useful and free of ethical concerns. Several products have received market authorization and numerous promising clinical trials are underway. We believe that such primary therapeutic cells will dominate the market for cell therapy applications for the foreseeable future. Consequently, production of such cellular products warrants attention and needs to be a fully controlled pharmaceutical process. Thus, where possible, such production should change from manufacture towards a truly scalable industrialized process for both allogeneic and autologous products. Here, we discuss manufacturing aspects of both autogeneic and allogeneic products, review the field, and provide historical context.
Graphical Abstract
Christian van den Bos, Robert Keefe, Carmen Schirmaier, Michael McCaman

Fast Single-Use VLP Vaccine Productions Based on Insect Cells and the Baculovirus Expression Vector System: Influenza as Case Study

Abstract
During the last few years virus like particles (VLPs) have become increasingly interesting for the production of vaccines. This development is explained by their excellent safety profile as well as a significant number of clinical studies showing strong and long-lasting protection. A further reason is the possibility of speeding up VLP vaccine manufacturing by implementing single-use (SU) technology in the case of mammalian and insect-cell-based processes, for which a multitude of SU devices up to middle-volume scale already exist. After briefly introducing the vaccine types and expression systems currently in use, this chapter turns to VLP vaccines and the insect cell/baculovirus expression vector system (IC/BEVS). Based on the main process characteristics and typical process flow of IC/BEVS-based VLP vaccine productions, suitable SU devices and their implementation are addressed. We subsequently report on the successful development of a fast, scalable benchtop production process generating a four-protein component influenza A H1N1 VLP vaccine candidate. This process is based on Spodoptera frugiperda (Sf)-9 cells and combines Redbiotec’s rePAXTM technology with obtainable SU devices for upstream (USP) and downstream processing (DSP).
Graphical Abstract
Regine Eibl, Nina Steiger, Sabine Wellnitz, Tiago Vicente, Corinne John, Dieter Eibl

Microbial High Cell Density Fermentations in a Stirred Single-Use Bioreactor

Abstract
Microbial fermentations are of major importance in the field of biotechnology. The range of applications is rather extensive, for example, the production of vaccines, recombinant proteins, and plasmids. During the past decades single-use bioreactors have become widely accepted in the biopharmaceutical industry. This acceptance is due to the several advantages these bioreactors offer, such as reduced operational and investment costs. Although this technology is attractive for microbial applications, its usage is rarely found. The main limitations are a relatively low oxygen transfer rate and cooling capacity. The aim of this study was to examine a stirred single-use bioreactor for its microbial suitability. Therefore, the important process engineering parameters volumetric mass transfer coefficient (k L a), mixing time, and the heat transfer coefficient were determined. Based on the k L a characteristics a mathematical model was established that was used with the other process engineering parameters to create a control space. For a further verification of the control space for microbial suitability, Escherichia coli and Pichia pastoris high cell density fermentations were carried out. The achieved cell density for the E. coli fermentation was OD600 = 175 (DCW = 60.8 g/L). For the P. pastoris cultivation a wet cell weight of 381 g/L was reached. The achieved cell densities were comparable to fermentations in stainless steel bioreactors. Furthermore, the expression of recombinant proteins with titers up to 9 g/L was guaranteed.
Graphical Abstract
Thomas Dreher, Bart Walcarius, Ute Husemann, Franziska Klingenberg, Christian Zahnow, Thorsten Adams, Davy de Wilde, Peter Casteels, Gerhard Greller

Quorus Bioreactor: A New Perfusion-Based Technology for Microbial Cultivation

Abstract
This chapter briefly reviews perfusion-based cultivation solutions used in biomanufacturing. It further introduces the innovative single-use Quorus Bioreactor, which was designed for the efficient cultivation of nontraditional production cell types. The Quorus Bioreactor design, process control, and productivity are described. Case studies are presented using Aspergillus niger and Lactococcus lactis as model organisms to demonstrate process flexibility, efficiency, and scalability.
Graphical Abstract
Sheena J. Fraser, Christian Endres

Cultivation of Marine Microorganisms in Single-Use Systems

Abstract
Marine cultures are an important source of novel substances and enzymes. As efforts to isolate strains from (deep) sea environments increase, the demand for methodology platforms to cultivate these organisms is also rising. Due to the high salt concentration and the shear sensitivity exhibited by some heterotrophic microalgae, single-use systems originally designed for the cultivation of mammalian cell lines can be a valuable alternative. Using the cultivation of the heterotrophic marine microalgae Crypthecodinium cohnii as an example, this chapter makes suggestions for experimental design, for improving process development by integrating parallel experiments, and for scaling-up and scaling-down methodologies. It describes how to identify suitable single-use systems and how to integrate a two-layer system with perfluordecalin to improve the gas transfer in deep-well plates. The process is also scaled up in several single-use systems. We also describe challenges in the process development to achieve sufficient oxygen transfer, monitoring, and control, and we discuss limitations such as corrosion, long-term stability, and leachables in single-use systems. Finally, we demonstrate a method for cheap, fast, and consistent process development for marine microorganisms.
Graphical Abstract
Friederike Hillig, Maciej Pilarek, Stefan Junne, Peter Neubauer

Flexible Biomanufacturing Processes that Address the Needs of the Future

Abstract
As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry’s emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including—but not limited to—vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.
Graphical Abstract
Bernhard Diel, Christian Manzke, Thorsten Peuker

An Approach to Quality and Security of Supply for Single-Use Bioreactors

Abstract
Single-use systems (also referred to as disposables) have become a huge part of the bioprocessing industry, which raised concern in the industry regarding quality and security of supply. Processes must be in place to assure the supply and control of outsourced activities and quality of purchased materials along the product life cycle. Quality and security of supply for single-use bioreactors (SUBs) are based on a multidisciplinary approach. Developing a state-of-the-art SUB-system based on quality by design (QbD) principles requires broad expertise and know-how including the cell culture application, polymer chemistry, regulatory requirements, and a deep understanding of the biopharmaceutical industry. Using standardized products reduces the complexity and strengthens the robustness of the supply chain. Well-established supplier relations including risk mitigation strategies are the basis for achieving long-term security of supply. Well-developed quality systems including change control approaches aligned with the requirements of the biopharmaceutical industry are a key factor in supporting long-term product availability. This chapter outlines the approach to security of supply for key materials used in single-use production processes for biopharmaceuticals from a supplier perspective.
Magali Barbaroux, Susanne Gerighausen, Heiko Hackel

A Risk Analysis for Production Processes with Disposable Bioreactors

Abstract
Quality management systems are, as a rule, tightly defined systems that conserve existing processes and therefore guarantee compliance with quality standards. But maintaining quality also includes introducing new enhanced production methods and making use of the latest findings of bioscience. The advances in biotechnology and single-use manufacturing methods for producing new drugs especially impose new challenges on quality management, as quality standards have not yet been set. New methods to ensure patient safety have to be established, as it is insufficient to rely only on current rules. A concept of qualification, validation, and manufacturing procedures based on risk management needs to be established and realized in pharmaceutical production. The chapter starts with an introduction to the regulatory background of the manufacture of medicinal products. It then continues with key methods of risk management. Hazards associated with the production of medicinal products with single-use equipment are described with a focus on bioreactors, storage containers, and connecting devices. The hazards are subsequently evaluated and criteria for risk evaluation are presented. This chapter concludes with aspects of industrial application of quality risk management.
Graphical Abstract
Tobias Merseburger, Ina Pahl, Daniel Müller, Markus Tanner

Backmatter

Weitere Informationen