Skip to main content
Erschienen in: Autonomous Robots 8/2019

27.03.2019

Distributed iterative learning control for multi-agent systems

Theoretic developments and application to formation flying

verfasst von: Andreas Hock, Angela P. Schoellig

Erschienen in: Autonomous Robots | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this work is to enable a team of quadrotors to learn how to accurately track a desired trajectory while holding a given formation. We solve this problem in a distributed manner, where each vehicle has only access to the information of its neighbors. The desired trajectory is only available to one (or few) vehicle(s). We present a distributed iterative learning control (ILC) approach where each vehicle learns from the experience of its own and its neighbors’ previous task repetitions and adapts its feedforward input to improve performance. Existing algorithms are extended in theory to make them more applicable to real-world experiments. In particular, we prove convergence of the learning scheme for any linear, causal learning function with gains chosen according to a simple scalar condition. Previous proofs were restricted to a specific learning function, which only depends on the tracking error derivative (D-type ILC). This extension provides more degrees of freedom in the ILC design and, as a result, better performance can be achieved. We also show that stability is not affected by a linear dynamic coupling between neighbors. This allows the use of an additional consensus feedback controller to compensate for non-repetitive disturbances. Possible robustness extensions for the ILC algorithm are discussed, the so-called Q-filter and a Kalman filter for disturbance estimation. Finally, this is the first work to show distributed ILC in experiment. With a team of two quadrotors, the practical applicability of the proposed distributed multi-agent ILC approach is attested and the benefits of the theoretic extension are analyzed. In a second experimental setup with a team of four quadrotors, we evaluate the impact of different communication graph structures on the learning performance. The results indicate, that there is a trade-off between fast learning convergence and formation synchronicity, especially during the first iterations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ren, W., Beard, R. W., & Atkins, E. M. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the American control conference (ACC) (pp. 1859–1864). Ren, W., Beard, R. W., & Atkins, E. M. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the American control conference (ACC) (pp. 1859–1864).
2.
Zurück zum Zitat Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.MathSciNetCrossRef Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.MathSciNetCrossRef
3.
Zurück zum Zitat Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.CrossRef Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.CrossRef
4.
Zurück zum Zitat Xie, G., & Wang, L. (2007). Consensus control for a class of networks of dynamic agents. International Journal of Robust and Nonlinear Control, 17(10–11), 941–959.MathSciNetCrossRef Xie, G., & Wang, L. (2007). Consensus control for a class of networks of dynamic agents. International Journal of Robust and Nonlinear Control, 17(10–11), 941–959.MathSciNetCrossRef
5.
Zurück zum Zitat Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robots by learning. Journal of Robotic Systems, 1(2), 123–140.CrossRef Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robots by learning. Journal of Robotic Systems, 1(2), 123–140.CrossRef
6.
Zurück zum Zitat Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control. IEEE Control Systems, 26(3), 96–114.CrossRef Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control. IEEE Control Systems, 26(3), 96–114.CrossRef
7.
Zurück zum Zitat Schoellig, A. P., Mueller, F. L., & D’Andrea, R. (2012). Optimization-based iterative learning for precise quadrocopter trajectory tracking. Autonomous Robots, 33(1–2), 103–127.CrossRef Schoellig, A. P., Mueller, F. L., & D’Andrea, R. (2012). Optimization-based iterative learning for precise quadrocopter trajectory tracking. Autonomous Robots, 33(1–2), 103–127.CrossRef
8.
Zurück zum Zitat Hehn, M., & D’Andrea, R. (2014). A frequency domain iterative learning algorithm for high-performance, periodic quadrocopter maneuvers. Mechatronics, 24(8), 954–965.CrossRef Hehn, M., & D’Andrea, R. (2014). A frequency domain iterative learning algorithm for high-performance, periodic quadrocopter maneuvers. Mechatronics, 24(8), 954–965.CrossRef
9.
Zurück zum Zitat Barton, K. L., & Alleyne, A. G. (2008). A cross-coupled iterative learning control design for precision motion control. IEEE Transactions on Control Systems Technology, 16(6), 1218–1231.CrossRef Barton, K. L., & Alleyne, A. G. (2008). A cross-coupled iterative learning control design for precision motion control. IEEE Transactions on Control Systems Technology, 16(6), 1218–1231.CrossRef
10.
Zurück zum Zitat Ahn, H.-S., & Chen, Y. (2009). Iterative learning control for multi-agent formation. In Proceedings of ICROS-SICE international joint conference (pp. 3111–3116). Ahn, H.-S., & Chen, Y. (2009). Iterative learning control for multi-agent formation. In Proceedings of ICROS-SICE international joint conference (pp. 3111–3116).
11.
Zurück zum Zitat Yang, S., Xu, J.-X., & Huang, D. (2012). Iterative learning control for multi-agent systems consensus tracking. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 4672–4677). Yang, S., Xu, J.-X., & Huang, D. (2012). Iterative learning control for multi-agent systems consensus tracking. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 4672–4677).
12.
Zurück zum Zitat Meng, D., Jia, Y., Du, J., & Yu, F. (2012). Tracking control over a finite interval for multi-agent systems with a time-varying reference trajectory. Systems & Control Letters, 61(7), 807–818.MathSciNetCrossRef Meng, D., Jia, Y., Du, J., & Yu, F. (2012). Tracking control over a finite interval for multi-agent systems with a time-varying reference trajectory. Systems & Control Letters, 61(7), 807–818.MathSciNetCrossRef
13.
Zurück zum Zitat Liu, Y., & Jia, Y. (2012). An iterative learning approach to formation control of multi-agent systems. Systems & Control Letters, 61(1), 148–154.MathSciNetCrossRef Liu, Y., & Jia, Y. (2012). An iterative learning approach to formation control of multi-agent systems. Systems & Control Letters, 61(1), 148–154.MathSciNetCrossRef
14.
Zurück zum Zitat Li, J., & Li, J. (2014). Adaptive iterative learning control for coordination of second-order multi-agent systems. International Journal of Robust and Nonlinear Control, 24, 3282–3299.MathSciNetCrossRef Li, J., & Li, J. (2014). Adaptive iterative learning control for coordination of second-order multi-agent systems. International Journal of Robust and Nonlinear Control, 24, 3282–3299.MathSciNetCrossRef
15.
Zurück zum Zitat Liu, Y., & Jia, Y. (2015). Robust formation control of discrete-time multi-agent systems by iterative learning approach. International Journal of Systems Science, 46(4), 625–633.MathSciNetCrossRef Liu, Y., & Jia, Y. (2015). Robust formation control of discrete-time multi-agent systems by iterative learning approach. International Journal of Systems Science, 46(4), 625–633.MathSciNetCrossRef
16.
Zurück zum Zitat Meng, D., Jia, Y., & Du, J. (2015). Robust iterative learning protocols for finite-time consensus of multi-agent systems with interval uncertain topologies. International Journal of Systems Science, 46(5), 857–871.MathSciNetCrossRef Meng, D., Jia, Y., & Du, J. (2015). Robust iterative learning protocols for finite-time consensus of multi-agent systems with interval uncertain topologies. International Journal of Systems Science, 46(5), 857–871.MathSciNetCrossRef
17.
Zurück zum Zitat Yang, S., Xu, J.-X., Huang, D., & Tan, Y. (2014). Optimal iterative learning control design for multi-agent systems consensus tracking. Systems & Control Letters, 69, 80–89.MathSciNetCrossRef Yang, S., Xu, J.-X., Huang, D., & Tan, Y. (2014). Optimal iterative learning control design for multi-agent systems consensus tracking. Systems & Control Letters, 69, 80–89.MathSciNetCrossRef
18.
Zurück zum Zitat Ahn, H.-S., Moore, K. L., & Chen, Y. (2010). Trajectory-keeping in satellite formation flying via robust periodic learning control. International Journal of Robust and Nonlinear Control, 20(14), 1655–1666.MathSciNetCrossRef Ahn, H.-S., Moore, K. L., & Chen, Y. (2010). Trajectory-keeping in satellite formation flying via robust periodic learning control. International Journal of Robust and Nonlinear Control, 20(14), 1655–1666.MathSciNetCrossRef
19.
Zurück zum Zitat Hock, A., & Schoellig, A. P. (2016). Distributed iterative learning control for a team of quadrotors. In Proceedings of the IEEE conference on decision and control (CDC). arXiv:1603.05933. Hock, A., & Schoellig, A. P. (2016). Distributed iterative learning control for a team of quadrotors. In Proceedings of the IEEE conference on decision and control (CDC). arXiv:​1603.​05933.
20.
Zurück zum Zitat Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Princeton: Princeton University Press.CrossRef Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Princeton: Princeton University Press.CrossRef
21.
Zurück zum Zitat Bauer, F. (2012). Normalized graph Laplacians for directed graphs. Linear Algebra and its Applications, 436(11), 4193–4222.MathSciNetCrossRef Bauer, F. (2012). Normalized graph Laplacians for directed graphs. Linear Algebra and its Applications, 436(11), 4193–4222.MathSciNetCrossRef
22.
Zurück zum Zitat Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control. Berlin: Springer.CrossRef Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control. Berlin: Springer.CrossRef
23.
Zurück zum Zitat Fax, J., & Murray, R. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9), 1465–1476.MathSciNetCrossRef Fax, J., & Murray, R. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9), 1465–1476.MathSciNetCrossRef
24.
Zurück zum Zitat Norrlöf, M., & Gunnarsson, S. (2002). Time and frequency domain convergence properties in iterative learning control. International Journal of Control, 75(14), 1114–1126.MathSciNetCrossRef Norrlöf, M., & Gunnarsson, S. (2002). Time and frequency domain convergence properties in iterative learning control. International Journal of Control, 75(14), 1114–1126.MathSciNetCrossRef
25.
Zurück zum Zitat Longman, R. W. (2010). Iterative learning control and repetitive control for engineering practice. International Journal of Control, 73(10), 930–954.MathSciNetCrossRef Longman, R. W. (2010). Iterative learning control and repetitive control for engineering practice. International Journal of Control, 73(10), 930–954.MathSciNetCrossRef
26.
Zurück zum Zitat Bristow, D. A., & Alleyne, A. G. (2003). A manufacturing system for microscale robotic deposition. In Proceedings of the American control conference (ACC) (pp. 2620–2625). Bristow, D. A., & Alleyne, A. G. (2003). A manufacturing system for microscale robotic deposition. In Proceedings of the American control conference (ACC) (pp. 2620–2625).
27.
Zurück zum Zitat Elci, H., Longman, R. W., Juang, J.-N., Ugoletti, R., Phan, M., Juang, J.-N., & Ugoletti, R. (1994). Discrete frequency based learning control for precision motion control. In: Proceedings of the IEEE international conference on systems, man, and cybernetics (pp. 2767–2773). Elci, H., Longman, R. W., Juang, J.-N., Ugoletti, R., Phan, M., Juang, J.-N., & Ugoletti, R. (1994). Discrete frequency based learning control for precision motion control. In: Proceedings of the IEEE international conference on systems, man, and cybernetics (pp. 2767–2773).
28.
Zurück zum Zitat de Roover, D. (1996). Synthesis of a robust iterative learning controller using an \(H_\infty \) approach. In: Proceedings of the IEEE conference on decision and control (CDC) (pp. 3044–3049). de Roover, D. (1996). Synthesis of a robust iterative learning controller using an \(H_\infty \) approach. In: Proceedings of the IEEE conference on decision and control (CDC) (pp. 3044–3049).
29.
Zurück zum Zitat Mueller, F. L., Schoellig, A. P., & D’Andrea, R. (2012) Iterative learning of feed-forward corrections for high-performance tracking. In Proceedings of the IEEE international conference on intelligent robots and systems (pp. 3276–3281). Mueller, F. L., Schoellig, A. P., & D’Andrea, R. (2012) Iterative learning of feed-forward corrections for high-performance tracking. In Proceedings of the IEEE international conference on intelligent robots and systems (pp. 3276–3281).
30.
Zurück zum Zitat Degen, N., & Schoellig, A. P. (2014) Design of norm-optimal iterative learning controllers: The effect of an iteration-domain Kalman filter for disturbance estimation. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 3590–3596). Degen, N., & Schoellig, A. P. (2014) Design of norm-optimal iterative learning controllers: The effect of an iteration-domain Kalman filter for disturbance estimation. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 3590–3596).
31.
Zurück zum Zitat Zhou, Q. L., Zhang, Y., Rabbath, C. A., & Theilliol, D. (2010). Design of feedback linearization control and reconfigurable control allocation with application to a quadrotor UAV. In: Proceedings of the IEEE conference on control and fault tolerant systems (pp. 371–376). Zhou, Q. L., Zhang, Y., Rabbath, C. A., & Theilliol, D. (2010). Design of feedback linearization control and reconfigurable control allocation with application to a quadrotor UAV. In: Proceedings of the IEEE conference on control and fault tolerant systems (pp. 371–376).
32.
Zurück zum Zitat Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). The GRASP multiple micro-UAV testbed. IEEE Robotics and Automation Magazine, 17(3), 56–65.CrossRef Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). The GRASP multiple micro-UAV testbed. IEEE Robotics and Automation Magazine, 17(3), 56–65.CrossRef
33.
Zurück zum Zitat Schoellig, A. P., Hehn, M., Lupashin, S., & D’Andrea, R. (2011). Feasiblity of motion primitives for choreographed quadrocopter flight. In: Proceedings of the American control conference (ACC) (pp. 3843–3849). Schoellig, A. P., Hehn, M., Lupashin, S., & D’Andrea, R. (2011). Feasiblity of motion primitives for choreographed quadrocopter flight. In: Proceedings of the American control conference (ACC) (pp. 3843–3849).
34.
Zurück zum Zitat Chen, Y., & Moore, K. L. (2002). An optimal design of PD-type iterative learning control with monotonic convergence. In: Proceedings of the IEEE international symposium on intelligent control (pp. 55–60). Chen, Y., & Moore, K. L. (2002). An optimal design of PD-type iterative learning control with monotonic convergence. In: Proceedings of the IEEE international symposium on intelligent control (pp. 55–60).
35.
Zurück zum Zitat Münz, U., Papachristodoulou, A., & Allgöwer, F. (2008). Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays. In: Proceedings of the IEEE conference on decision and control (CDC) (pp. 2038–2043). Münz, U., Papachristodoulou, A., & Allgöwer, F. (2008). Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays. In: Proceedings of the IEEE conference on decision and control (CDC) (pp. 2038–2043).
36.
Zurück zum Zitat Hu, J., & Lin, Y. (2010). Consensus control for multi-agent systems with double-integrator dynamics and time delays. IET Control Theory & Applications, 4(1), 109–118.MathSciNetCrossRef Hu, J., & Lin, Y. (2010). Consensus control for multi-agent systems with double-integrator dynamics and time delays. IET Control Theory & Applications, 4(1), 109–118.MathSciNetCrossRef
Metadaten
Titel
Distributed iterative learning control for multi-agent systems
Theoretic developments and application to formation flying
verfasst von
Andreas Hock
Angela P. Schoellig
Publikationsdatum
27.03.2019
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 8/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-019-09845-4

Weitere Artikel der Ausgabe 8/2019

Autonomous Robots 8/2019 Zur Ausgabe

Neuer Inhalt