Skip to main content

2019 | OriginalPaper | Buchkapitel

7. Distributed Real-Time Demand Response

verfasst von : Pengwei Du, Ning Lu, Haiwang Zhong

Erschienen in: Demand Response in Smart Grids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a real-time demand response (DR) framework and model for a smart distribution grid is formulated. The model is optimized in a distributed manner with the Lagrangian relaxation (LR) method. Consumers adjust their own hourly load level in response to real-time prices (RTP) of electricity to maximize their utility. Because the convergence performance of existing distributed algorithms highly relies on the selection of the iteration step size and search direction, a novel approach termed Lagrangian multiplier optimal selection (LMOS) is proposed to overcome this difficulty. Via sensitivity analysis, the energy demand elasticity of consumers can be effectively estimated. Then the LMOS model can be established to optimize the Lagrangian multipliers in a relatively small linearized neighborhood. The salient feature of LMOS is its capability to optimally determine the Lagrangian multipliers during each iteration, which greatly improves the convergence performance of the distributed algorithm. Case studies based on a distribution grid with the number of consumers ranging from 10 to 100 demonstrate that the proposed method greatly outperforms the prevalent approaches, in terms of both efficiency and robustness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Siano, P., & Sarno, D. (2016). Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy, 161, 533–551.CrossRef Siano, P., & Sarno, D. (2016). Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy, 161, 533–551.CrossRef
2.
Zurück zum Zitat Yu, Z., Chen, S., & Tong, L. (2016). An intelligent energy management system for large-scale charging of electric vehicles. CSEE Journal of Power and Energy Systems, 2(1), 47–53.CrossRef Yu, Z., Chen, S., & Tong, L. (2016). An intelligent energy management system for large-scale charging of electric vehicles. CSEE Journal of Power and Energy Systems, 2(1), 47–53.CrossRef
3.
Zurück zum Zitat Li, Z., Wu, W., Zhang, B., et al. (2013). Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-Newton method. IEEE Transactions on Power Apparatus and Systems, 28(4), 4516–4527.CrossRef Li, Z., Wu, W., Zhang, B., et al. (2013). Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-Newton method. IEEE Transactions on Power Apparatus and Systems, 28(4), 4516–4527.CrossRef
4.
Zurück zum Zitat Lai, X., Xie, L., Xia, Q., et al. (2014). Decentralized multi-area economic dispatch via dynamic multiplier-based Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 30(6), 3225–3233.CrossRef Lai, X., Xie, L., Xia, Q., et al. (2014). Decentralized multi-area economic dispatch via dynamic multiplier-based Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 30(6), 3225–3233.CrossRef
5.
Zurück zum Zitat Deng, R., Xiao, G., Lu, R., et al. (2015). Fast distributed demand response with spatially- and temporally- coupled constraints in smart grid. IEEE Transactions on Industrial Informatics, 11(6), 1597–1606.CrossRef Deng, R., Xiao, G., Lu, R., et al. (2015). Fast distributed demand response with spatially- and temporally- coupled constraints in smart grid. IEEE Transactions on Industrial Informatics, 11(6), 1597–1606.CrossRef
6.
Zurück zum Zitat Xing, H., Cheng, H., & Zhang, L. (2015). Demand response based and wind farm integrated economic dispatch. CSEE Journal of Power and Energy Systems, 1(4), 47–51.CrossRef Xing, H., Cheng, H., & Zhang, L. (2015). Demand response based and wind farm integrated economic dispatch. CSEE Journal of Power and Energy Systems, 1(4), 47–51.CrossRef
7.
Zurück zum Zitat Arteconi, A., Patteeuw, D., Bruninx, K., et al. (2016). Active demand response with electric heating systems: Impact of market penetration. Applied Energy, 177, 636–648.CrossRef Arteconi, A., Patteeuw, D., Bruninx, K., et al. (2016). Active demand response with electric heating systems: Impact of market penetration. Applied Energy, 177, 636–648.CrossRef
8.
Zurück zum Zitat Nolan, S., & O’Malley, M. (2015). Challenges and barriers to demand response deployment and evaluation. Applied Energy, 152, 1–10.CrossRef Nolan, S., & O’Malley, M. (2015). Challenges and barriers to demand response deployment and evaluation. Applied Energy, 152, 1–10.CrossRef
9.
Zurück zum Zitat Sheikhi, A., Rayati, M., Bahrami, S., et al. (2015). Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 6(2), 675–683.CrossRef Sheikhi, A., Rayati, M., Bahrami, S., et al. (2015). Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 6(2), 675–683.CrossRef
10.
Zurück zum Zitat Wang, Q., Zhang, C., Ding, Y., et al. (2015). Review of real-time electricity markets for integrating distributed energy resources and demand response. Applied Energy, 138, 695–706.CrossRef Wang, Q., Zhang, C., Ding, Y., et al. (2015). Review of real-time electricity markets for integrating distributed energy resources and demand response. Applied Energy, 138, 695–706.CrossRef
11.
Zurück zum Zitat Chen, S., & Liu, C. (2017). From demand response to transactive energy: State-of-the-art. Journal of Modern Power Systems and Clean Energy, 5(1), 10–19.MathSciNetCrossRef Chen, S., & Liu, C. (2017). From demand response to transactive energy: State-of-the-art. Journal of Modern Power Systems and Clean Energy, 5(1), 10–19.MathSciNetCrossRef
12.
Zurück zum Zitat Papadaskalopoulos, D., & Strbac, G. (2013). Decentralized participation of flexible demand in electricity markets-part I: Market mechanism. IEEE Transactions on Power Apparatus and Systems, 28(4), 3658–3666.CrossRef Papadaskalopoulos, D., & Strbac, G. (2013). Decentralized participation of flexible demand in electricity markets-part I: Market mechanism. IEEE Transactions on Power Apparatus and Systems, 28(4), 3658–3666.CrossRef
13.
Zurück zum Zitat Fan, Z. (2012). A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Transactions on Smart Grid, 3(3), 1280–1290.CrossRef Fan, Z. (2012). A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Transactions on Smart Grid, 3(3), 1280–1290.CrossRef
14.
Zurück zum Zitat Zhong, H., Xie, L., Xia, Q., et al. (2013). Coupon incentive-based demand response: Theory and case study. IEEE Transactions on Power Apparatus and Systems, 28(2), 1266–1276.CrossRef Zhong, H., Xie, L., Xia, Q., et al. (2013). Coupon incentive-based demand response: Theory and case study. IEEE Transactions on Power Apparatus and Systems, 28(2), 1266–1276.CrossRef
15.
Zurück zum Zitat Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21.CrossRef Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21.CrossRef
16.
Zurück zum Zitat Behboodi, S., Chassin, D., Crawford, C., et al. (2016). Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 162, 139–148.CrossRef Behboodi, S., Chassin, D., Crawford, C., et al. (2016). Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 162, 139–148.CrossRef
17.
Zurück zum Zitat Deng, R., Yang, Z., Hou, F., et al. (2015). Distributed real-time demand response in multiseller-multibuyer smart distribution grid. IEEE Transactions on Power Apparatus and Systems, 30(5), 2364–2374.CrossRef Deng, R., Yang, Z., Hou, F., et al. (2015). Distributed real-time demand response in multiseller-multibuyer smart distribution grid. IEEE Transactions on Power Apparatus and Systems, 30(5), 2364–2374.CrossRef
18.
Zurück zum Zitat Chen, C., Wang, J., & Kishore, S. (2014). A distributed direct load control approach for large-scale residential demand response. IEEE Transactions on Power Apparatus and Systems, 29(5), 2219–2228.CrossRef Chen, C., Wang, J., & Kishore, S. (2014). A distributed direct load control approach for large-scale residential demand response. IEEE Transactions on Power Apparatus and Systems, 29(5), 2219–2228.CrossRef
19.
Zurück zum Zitat Safdarian, A., Firruzabad, M., & Lehtonen, M. (2014). A distributed algorithm for managing residential demand response in smart grids. IEEE Transactions on Industrial Informatics, 10(4), 2385–2393.CrossRef Safdarian, A., Firruzabad, M., & Lehtonen, M. (2014). A distributed algorithm for managing residential demand response in smart grids. IEEE Transactions on Industrial Informatics, 10(4), 2385–2393.CrossRef
20.
Zurück zum Zitat Mazidi, M., Monsef, H., & Siano, P. (2016). Robust day-ahead scheduling of smart distribution networks considering demand response programs. Applied Energy, 178, 929–942.CrossRef Mazidi, M., Monsef, H., & Siano, P. (2016). Robust day-ahead scheduling of smart distribution networks considering demand response programs. Applied Energy, 178, 929–942.CrossRef
21.
Zurück zum Zitat Ongsakul, W., & Petcharaks, N. (2004). Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 19(1), 620–628.CrossRef Ongsakul, W., & Petcharaks, N. (2004). Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Apparatus and Systems, 19(1), 620–628.CrossRef
22.
Zurück zum Zitat Conejo, A., Morales, J., & Baringo, L. (2010). Real-time demand response model. IEEE Transactions on Smart Grid, 1(3), 236–242.CrossRef Conejo, A., Morales, J., & Baringo, L. (2010). Real-time demand response model. IEEE Transactions on Smart Grid, 1(3), 236–242.CrossRef
23.
Zurück zum Zitat Forushani, E., Moghaddam, M., Sheikh-El-Eslami, M., et al. (2014). Risk- constrained offering strategy of wind power producers considering intraday demand response exchange. IEEE Transactions on Sustainable Energy, 5(4), 1036–1047.CrossRef Forushani, E., Moghaddam, M., Sheikh-El-Eslami, M., et al. (2014). Risk- constrained offering strategy of wind power producers considering intraday demand response exchange. IEEE Transactions on Sustainable Energy, 5(4), 1036–1047.CrossRef
24.
Zurück zum Zitat Kazemi, M., Mohammadi-Ivatloo, B., & Ehsan, M. (2015). Risk-constrained strategic bidding of gencos considering demand response. IEEE Transactions on Power Apparatus and Systems, 30(1), 376–384.CrossRef Kazemi, M., Mohammadi-Ivatloo, B., & Ehsan, M. (2015). Risk-constrained strategic bidding of gencos considering demand response. IEEE Transactions on Power Apparatus and Systems, 30(1), 376–384.CrossRef
25.
Zurück zum Zitat Wei, W., Liu, F., & Mei, S. (2015). Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Transactions on Smart Grid, 6(3), 1364–1374.CrossRef Wei, W., Liu, F., & Mei, S. (2015). Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Transactions on Smart Grid, 6(3), 1364–1374.CrossRef
26.
Zurück zum Zitat Epstein, L. G., & Zin, S. E. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99, 263–286.CrossRef Epstein, L. G., & Zin, S. E. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99, 263–286.CrossRef
27.
Zurück zum Zitat Gountis, P. V., & Bakirtzis, G. A. (2004). Bidding strategies for electricity producers in a competitive electricity marketplace. IEEE Transactions on Power Apparatus and Systems, 19(1), 356–365.CrossRef Gountis, P. V., & Bakirtzis, G. A. (2004). Bidding strategies for electricity producers in a competitive electricity marketplace. IEEE Transactions on Power Apparatus and Systems, 19(1), 356–365.CrossRef
28.
Zurück zum Zitat Fahrioglu, M., & Alvarado, L. F. (2001). Using utility information to calibrate customer demand management behavior models. IEEE Transactions on Power Apparatus and Systems, 16(2), 317–322.CrossRef Fahrioglu, M., & Alvarado, L. F. (2001). Using utility information to calibrate customer demand management behavior models. IEEE Transactions on Power Apparatus and Systems, 16(2), 317–322.CrossRef
29.
Zurück zum Zitat Harrison, G. W. (2008). Maximum likelihood estimation of utility functions using Stata. University of Central Florida, Working Chapter. 6–12. Harrison, G. W. (2008). Maximum likelihood estimation of utility functions using Stata. University of Central Florida, Working Chapter. 6–12.
30.
Zurück zum Zitat Ratliff, L. J., Dong, R., Ohlsson, H., & Sastry, S. S. (2014). Incentive design and utility learning via energy disaggregation. IFAC Proceedings Volumes, 47(3), 3158–3163.CrossRef Ratliff, L. J., Dong, R., Ohlsson, H., & Sastry, S. S. (2014). Incentive design and utility learning via energy disaggregation. IFAC Proceedings Volumes, 47(3), 3158–3163.CrossRef
31.
Zurück zum Zitat Li, F., & Bo, R. (2007). DCOPF-based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity. IEEE Transactions on Power Apparatus and Systems, 22(4), 1475–1485.CrossRef Li, F., & Bo, R. (2007). DCOPF-based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity. IEEE Transactions on Power Apparatus and Systems, 22(4), 1475–1485.CrossRef
34.
Zurück zum Zitat Zhu, M., & Martinez, S. (2012). On distributed convex optimization under inequality and equality constraints. IEEE Transactions on Automatic Control, 57(1), 151–164.MathSciNetCrossRef Zhu, M., & Martinez, S. (2012). On distributed convex optimization under inequality and equality constraints. IEEE Transactions on Automatic Control, 57(1), 151–164.MathSciNetCrossRef
35.
Zurück zum Zitat Roh, H., & Lee, J. (2016). Residential demand response scheduling with multiclass appliances in the smart grid. IEEE Transactions on Smart Grid, 7(1), 94–104.CrossRef Roh, H., & Lee, J. (2016). Residential demand response scheduling with multiclass appliances in the smart grid. IEEE Transactions on Smart Grid, 7(1), 94–104.CrossRef
37.
Zurück zum Zitat Bibby, J. (1974). Axiomatisations of the average and a further generalisation of monotonic sequences. Glasgow Mathematical Journal, 15(1), 63–65.MathSciNetCrossRef Bibby, J. (1974). Axiomatisations of the average and a further generalisation of monotonic sequences. Glasgow Mathematical Journal, 15(1), 63–65.MathSciNetCrossRef
38.
Zurück zum Zitat Bertsekas D. (1999). Nonlinear programming. Athena Scientific. Bertsekas D. (1999). Nonlinear programming. Athena Scientific.
Metadaten
Titel
Distributed Real-Time Demand Response
verfasst von
Pengwei Du
Ning Lu
Haiwang Zhong
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19769-8_7