Skip to main content
Erschienen in: Wireless Networks 5/2013

01.07.2013

Distributed resource management in wireless sensor networks using reinforcement learning

verfasst von: Kunal Shah, Mario Di Francesco, Mohan Kumar

Erschienen in: Wireless Networks | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In wireless sensor networks (WSNs), resource-constrained nodes are expected to operate in highly dynamic and often unattended environments. Hence, support for intelligent, autonomous, adaptive and distributed resource management is an essential ingredient of a middleware solution for developing scalable and dynamic WSN applications. In this article, we present a resource management framework based on a two-tier reinforcement learning scheme to enable autonomous self-learning and adaptive applications with inherent support for efficient resource management. Our design goal is to build a system with a bottom-up approach where each sensor node is responsible for its resource allocation and task selection. The first learning tier (micro-learning) allows individual sensor nodes to self-schedule their tasks by using only local information, thus enabling a timely adaptation. The second learning tier (macro-learning) governs the micro-learners by tuning their operating parameters so as to guide the system towards a global application-specific optimization goal (e.g., maximizing the network lifetime). The effectiveness of our framework is exemplified by means of a target tracking application built on top of it. Finally, the performance of our scheme is compared against other existing approaches by simulation. We show that our two-tier reinforcement learning scheme is significantly more efficient than traditional approaches to resource management while fulfilling the application requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In order to reduce the related overhead, we assume that the rewards are piggybacked into the messages.
 
Literatur
2.
3.
Zurück zum Zitat Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks 8(1). doi:10.1145/1993042.1993049. Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks 8(1). doi:10.​1145/​1993042.​1993049.
5.
Zurück zum Zitat Hadim, S., & Mohamed, N. (2006). Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online 7(3), Article no. 0603–o3001. Hadim, S., & Mohamed, N. (2006). Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online 7(3), Article no. 0603–o3001.
6.
Zurück zum Zitat Heinzelman, W., Murphy, A., Carvalho, H., & Perillo, M. (2004). Middleware to support sensor network applications. IEEE Network 18,(1), 6–14.CrossRef Heinzelman, W., Murphy, A., Carvalho, H., & Perillo, M. (2004). Middleware to support sensor network applications. IEEE Network 18,(1), 6–14.CrossRef
7.
Zurück zum Zitat Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In MOBICOM (pp. 56–67). doi:10.1145/345910.345920. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In MOBICOM (pp. 56–67). doi:10.​1145/​345910.​345920.
9.
Zurück zum Zitat Kagan Tumer, D. H. W. (2004). Collectives and the design of complex systems. Berlin: Springer.MATHCrossRef Kagan Tumer, D. H. W. (2004). Collectives and the design of complex systems. Berlin: Springer.MATHCrossRef
10.
Zurück zum Zitat Kogekar, S., Neema, S., Eames, B., Koutsoukos, X., Ledeczi, A., & Maroti, M. (2004). Constraint-guided dynamic reconfiguration in sensor networks. In: Proceedings of the 3rd international symposium on information processing in sensor networks (IPSN-04) (pp. 379–387). New York: ACM Press. Kogekar, S., Neema, S., Eames, B., Koutsoukos, X., Ledeczi, A., & Maroti, M. (2004). Constraint-guided dynamic reconfiguration in sensor networks. In: Proceedings of the 3rd international symposium on information processing in sensor networks (IPSN-04) (pp. 379–387). New York: ACM Press.
11.
Zurück zum Zitat Krishnamachari, B., Wicker, S. B., Béjar, R., & Fernández, C. (2003) On the complexity of distributed self-configuration in wireless networks. Telecommunication Systems 22(1–4), 33–59. doi:10.1023/A:1023426501170. Krishnamachari, B., Wicker, S. B., Béjar, R., & Fernández, C. (2003) On the complexity of distributed self-configuration in wireless networks. Telecommunication Systems 22(1–4), 33–59. doi:10.​1023/​A:​1023426501170.
12.
Zurück zum Zitat Leen-Kiat Soh Costa Tsatsoulis, H. S. (2003). Distributed sensor networks: A multiagent perspective, chap. In A satisfying, negotiated and learning coalition formation architecture (pp. 109–137). Kluwer. Leen-Kiat Soh Costa Tsatsoulis, H. S. (2003). Distributed sensor networks: A multiagent perspective, chap. In A satisfying, negotiated and learning coalition formation architecture (pp. 109–137). Kluwer.
13.
Zurück zum Zitat Liu, T., & Martonosi, M. (2003). Impala: A middleware system for managing autonomic, parallel sensor systems. In: PPoPP’03: Proceedings of the 9th ACM SIGPLAN symposium on principles and practice of parallel programming (pp. 107–118). Liu, T., & Martonosi, M. (2003). Impala: A middleware system for managing autonomic, parallel sensor systems. In: PPoPP’03: Proceedings of the 9th ACM SIGPLAN symposium on principles and practice of parallel programming (pp. 107–118).
14.
Zurück zum Zitat Mahadevan, S., & Conell, J. (1992). Automatic programming of behavior-based robots using reinforcement learning. Artificial Intelligence 55(2), 311–365.CrossRef Mahadevan, S., & Conell, J. (1992). Automatic programming of behavior-based robots using reinforcement learning. Artificial Intelligence 55(2), 311–365.CrossRef
15.
Zurück zum Zitat Mainland, G., Parkes, D. C., & Welsh, M. (2005). Decentralized, adaptive resource allocation for sensor networks. In NSDI’05: Proceedings of the 2nd symposium on networked systems design & implementation (pp. 315–328). Mainland, G., Parkes, D. C., & Welsh, M. (2005). Decentralized, adaptive resource allocation for sensor networks. In NSDI’05: Proceedings of the 2nd symposium on networked systems design & implementation (pp. 315–328).
16.
Zurück zum Zitat Marron, P. J., Lachenmann, A., Minder, D., Hahner, J., Sauter, R., & Rothermel, K. (2005). TinyCubus: A flexible and adaptive framework sensor networks. In: EWSN’05: Proceedings of the 2nd European workshop on wireless sensor networks (pp. 278–289). Marron, P. J., Lachenmann, A., Minder, D., Hahner, J., Sauter, R., & Rothermel, K. (2005). TinyCubus: A flexible and adaptive framework sensor networks. In: EWSN’05: Proceedings of the 2nd European workshop on wireless sensor networks (pp. 278–289).
17.
Zurück zum Zitat Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.MathSciNetMATHCrossRef Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.MathSciNetMATHCrossRef
18.
Zurück zum Zitat Ortiz, C., Rauenbush, T., Hsu, E., & Vincent, R. (2003). Distributed sensor networks: A multiagent perspective. In Dynamic resource-bounded negotiation in non-additive domains (pp. 61–106). Kluwer. Ortiz, C., Rauenbush, T., Hsu, E., & Vincent, R. (2003). Distributed sensor networks: A multiagent perspective. In Dynamic resource-bounded negotiation in non-additive domains (pp. 61–106). Kluwer.
21.
Zurück zum Zitat Shah, K., & Kumar, M. (2007). Distributed independent reinforcement learning (DIRL) approach to resource management in wireless sensor networks. In: IEEE internatonal conference on mobile adhoc and sensor systems, 2007 (MASS 2007) (pp. 1–9). doi:10.1109/MOBHOC.2007.4428658. Shah, K., & Kumar, M. (2007). Distributed independent reinforcement learning (DIRL) approach to resource management in wireless sensor networks. In: IEEE internatonal conference on mobile adhoc and sensor systems, 2007 (MASS 2007) (pp. 1–9). doi:10.​1109/​MOBHOC.​2007.​4428658.
22.
Zurück zum Zitat Shah, K., & Kumar, M. (2008). Resource management in wireless sensor networks using collective intelligence. In: International conference on intelligent sensors, sensor networks and information processing, 2008 (ISSNIP 2008) (pp. 423–428). doi:10.1109/ISSNIP.2008.4762025. Shah, K., & Kumar, M. (2008). Resource management in wireless sensor networks using collective intelligence. In: International conference on intelligent sensors, sensor networks and information processing, 2008 (ISSNIP 2008) (pp. 423–428). doi:10.​1109/​ISSNIP.​2008.​4762025.
23.
Zurück zum Zitat Sutton, R. (1984). Temporal credit assignment in reinforcement learning. Ph.D. thesis, Department of Computer Science, University of Massachusetts, Amherst, MA. Published as COINS Technical Report 84-2. Sutton, R. (1984). Temporal credit assignment in reinforcement learning. Ph.D. thesis, Department of Computer Science, University of Massachusetts, Amherst, MA. Published as COINS Technical Report 84-2.
25.
Zurück zum Zitat Terfloth, K., Wittenburg, G., & Schiller, J. H. (2006). FACTS—a rule-based middleware architecture for wireless sensor networks. In COMSWARE IEEE. Terfloth, K., Wittenburg, G., & Schiller, J. H. (2006). FACTS—a rule-based middleware architecture for wireless sensor networks. In COMSWARE IEEE.
26.
Zurück zum Zitat Victor Lesser Charles Ortiz, M. T. (2003). Distributed sensor networks: A multiagent perspective. Kluwer. Victor Lesser Charles Ortiz, M. T. (2003). Distributed sensor networks: A multiagent perspective. Kluwer.
27.
Zurück zum Zitat Watkins, C. (1989). Learning from delayed rewards. Ph.D. thesis, University of Cambridge, England. Watkins, C. (1989). Learning from delayed rewards. Ph.D. thesis, University of Cambridge, England.
28.
Zurück zum Zitat Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning 8(3), 279–292.MATH Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning 8(3), 279–292.MATH
30.
Zurück zum Zitat Wolpert, D., & Tumer, K. (2002). Collective intelligence, data routing and braess’ paradox. Journal of Artificial Intelligence Research (JAIR), 16, 359–387. doi:10.1613/jair.995. Wolpert, D., & Tumer, K. (2002). Collective intelligence, data routing and braess’ paradox. Journal of Artificial Intelligence Research (JAIR), 16, 359–387. doi:10.​1613/​jair.​995.
31.
Zurück zum Zitat Yu, Y., Krishnamachari, B., & Prasanna, V. K. (2004). Issues in designing middleware for wireless sensor networks. IEEE Network, 18(1), 15–21.CrossRef Yu, Y., Krishnamachari, B., & Prasanna, V. K. (2004). Issues in designing middleware for wireless sensor networks. IEEE Network, 18(1), 15–21.CrossRef
Metadaten
Titel
Distributed resource management in wireless sensor networks using reinforcement learning
verfasst von
Kunal Shah
Mario Di Francesco
Mohan Kumar
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2013
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-012-0496-2

Weitere Artikel der Ausgabe 5/2013

Wireless Networks 5/2013 Zur Ausgabe

Neuer Inhalt