Skip to main content
Erschienen in: Wireless Networks 4/2018

03.11.2016

Distributed throughput optimization for heterogeneous IEEE 802.11 DCF networks

verfasst von: Xinghua Sun, Yayu Gao

Erschienen in: Wireless Networks | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For IEEE 802.11 DCF networks in ad-hoc mode, how to achieve the maximum throughput in a distributed manner draws much attention in previous studies. The problem becomes challenging for partially-saturated heterogeneous networks with multiple groups, as the optimal access parameters not only depend on the group size of saturated groups but also the aggregate input rate of all the unsaturated groups, both of which are hard to obtain without a central controller. In this paper, a novel distributive scheme is proposed for partially-saturated heterogeneous IEEE 802.11 DCF networks to achieve the maximum network throughput. With the proposed scheme, each saturated transmitter can obtain the optimal initial backoff window size distributively by two estimation rounds. In each estimation round, each saturated transmitter only needs to count the number of busy intervals and ACK frames on the channel. For fully-saturated networks, only one estimation round is needed. It is shown by extensive simulations that the proposed scheme can achieve the maximum network throughput in a distributive manner.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Furthermore, it was shown in [16] that the node-throughput ratio is also determined by the initial backoff window size. Therefore, the ratio of the initial backoff window sizes remains unchanged so as to meet certain throughput differentiation requirement.
 
2
With carrier sensing, each transmitter can determine whether one transmission on the channel is successful or not by detecting the ACK frame, as shown in Fig. 1.
 
3
Note that if the scale factor \(C<1\), each saturated transmitter would have a smaller initial backoff window size, and access the channel more frequently. In this case, the channel contention becomes more fierce. Consequently, the unsaturated transmitter may become saturated. To prevent this from happening, the scaling factor is set to be larger than 1.
 
Literatur
1.
Zurück zum Zitat Gupta, A., Min, J., & Rhee, I. (2012). WiFox: Scaling WiFi Performance for Large Audience Environments. Proceedings of CoNEXT (pp. 217–228) Gupta, A., Min, J., & Rhee, I. (2012). WiFox: Scaling WiFi Performance for Large Audience Environments. Proceedings of CoNEXT (pp. 217–228)
2.
Zurück zum Zitat Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun, 18(3), 535–547.MathSciNetCrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun, 18(3), 535–547.MathSciNetCrossRef
3.
Zurück zum Zitat Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. Proceedings of IEEE INFOCOM (vol. 2, pp. 844–852), doi:10.1109/INFCOM.2003.1208922 Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. Proceedings of IEEE INFOCOM (vol. 2, pp. 844–852), doi:10.​1109/​INFCOM.​2003.​1208922
4.
Zurück zum Zitat Toledo, A., Vercauteren, T., & Wang, X. (2006). Adaptive optimization of IEEE 802.11 DCF based on Bayesian estimation of the number of competing terminals. IEEE Trans Mob Comput, 5(9), 1283–1296. doi:10.1109/TMC.2006.124.CrossRef Toledo, A., Vercauteren, T., & Wang, X. (2006). Adaptive optimization of IEEE 802.11 DCF based on Bayesian estimation of the number of competing terminals. IEEE Trans Mob Comput, 5(9), 1283–1296. doi:10.​1109/​TMC.​2006.​124.CrossRef
5.
Zurück zum Zitat Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans Netw, 8(6), 785–799.CrossRef Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans Netw, 8(6), 785–799.CrossRef
6.
Zurück zum Zitat Dai, L., & Sun, X. (2013). A unified analysis of IEEE 802.11 DCF networks: Stability, throughput, and delay. IEEE Trans Mob Comput, 12(8), 1558–1572.CrossRef Dai, L., & Sun, X. (2013). A unified analysis of IEEE 802.11 DCF networks: Stability, throughput, and delay. IEEE Trans Mob Comput, 12(8), 1558–1572.CrossRef
7.
Zurück zum Zitat Li, B., Battiti, R., & Fang, Y. (2007). Achieving optimal performance by using the IEEE 802.11 MAC protocol with service differentiation enhancements. IEEE Trans Veh Technol, 56(3), 1374–1387. doi:10.1109/TVT.2007.895565.CrossRef Li, B., Battiti, R., & Fang, Y. (2007). Achieving optimal performance by using the IEEE 802.11 MAC protocol with service differentiation enhancements. IEEE Trans Veh Technol, 56(3), 1374–1387. doi:10.​1109/​TVT.​2007.​895565.CrossRef
9.
Zurück zum Zitat Gao, Y., Sun, X., & Dai, L. (2014). IEEE 802.11e EDCA networks: Modeling, differentiation and optimization. IEEE Trans Wirel Commun, 13(7), 3863–3879.CrossRef Gao, Y., Sun, X., & Dai, L. (2014). IEEE 802.11e EDCA networks: Modeling, differentiation and optimization. IEEE Trans Wirel Commun, 13(7), 3863–3879.CrossRef
10.
Zurück zum Zitat Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. SIGCOMM Comput Commun Rev, 35(4), 121–132.CrossRef Heusse, M., Rousseau, F., Guillier, R., & Duda, A. (2005). Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. SIGCOMM Comput Commun Rev, 35(4), 121–132.CrossRef
11.
Zurück zum Zitat Cali, F., Conti, M., & Gregori, E. (2000b). IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE J Sel Areas Commun, 18(9), 1774–1786. doi:10.1109/49.872963.CrossRef Cali, F., Conti, M., & Gregori, E. (2000b). IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE J Sel Areas Commun, 18(9), 1774–1786. doi:10.​1109/​49.​872963.CrossRef
12.
Zurück zum Zitat Ge, Y., Hou, J. C., & Choi, S. (2007). An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access. Comput Netw, 51(8), 1955–1980.CrossRefMATH Ge, Y., Hou, J. C., & Choi, S. (2007). An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access. Comput Netw, 51(8), 1955–1980.CrossRefMATH
14.
Zurück zum Zitat Mao, J., Mao, Y., Leng, S., & Bai, X. (2009). A simple adaptive optimization scheme for IEEE 802.11 with differentiated channel access. IEEE Commun Lett, 13(5), 297–299.CrossRef Mao, J., Mao, Y., Leng, S., & Bai, X. (2009). A simple adaptive optimization scheme for IEEE 802.11 with differentiated channel access. IEEE Commun Lett, 13(5), 297–299.CrossRef
15.
Zurück zum Zitat Hu, C., & Hou, J.C. (2007). A Novel Approach to Contention Control in IEEE 802.11e-Operated WLANs. Proceedings of IEEE INFOCOM (pp. 1190–1198) Hu, C., & Hou, J.C. (2007). A Novel Approach to Contention Control in IEEE 802.11e-Operated WLANs. Proceedings of IEEE INFOCOM (pp. 1190–1198)
17.
Zurück zum Zitat Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks. Proceedings of INFOCOM (pp. 1–5) Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks. Proceedings of INFOCOM (pp. 1–5)
18.
Zurück zum Zitat Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in distributed CSMA scheduling algorithms with collisions. IEEE/ACM Trans Netw, 19(3), 816–829.CrossRef Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in distributed CSMA scheduling algorithms with collisions. IEEE/ACM Trans Netw, 19(3), 816–829.CrossRef
19.
Zurück zum Zitat Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. J Parallel Distrib Comput, 73(8), 1049–1065.CrossRefMATH Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. J Parallel Distrib Comput, 73(8), 1049–1065.CrossRefMATH
20.
Zurück zum Zitat Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sens J, 13(10), 3596–3604.CrossRef Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sens J, 13(10), 3596–3604.CrossRef
21.
Zurück zum Zitat Corless, R., Gonnet, G., Hare, D., Jeffrey, D., & Knuth, D. (1996). On the LambertW function. Adv Comput Math, 5(1), 329–359.MathSciNetCrossRefMATH Corless, R., Gonnet, G., Hare, D., Jeffrey, D., & Knuth, D. (1996). On the LambertW function. Adv Comput Math, 5(1), 329–359.MathSciNetCrossRefMATH
22.
Zurück zum Zitat IEEE 802.11n-2009. (2009). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput. IEEE 802.11n-2009. (2009). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput.
Metadaten
Titel
Distributed throughput optimization for heterogeneous IEEE 802.11 DCF networks
verfasst von
Xinghua Sun
Yayu Gao
Publikationsdatum
03.11.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1392-y

Weitere Artikel der Ausgabe 4/2018

Wireless Networks 4/2018 Zur Ausgabe

Neuer Inhalt